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Abstract

Microstructure sensitive design has a critical impact on the performance of engineering

materials. The safety and performance requirements of critical components, as well as

the cost of material and machining of Titanium components, make dovetailing of the

microstructure imperative. This paper addresses the optimization of several microstruc-

ture design problems for Titanium components under specific design constraints using

a feedback-aware data-driven solution methodology. In this study, the microstructure

is modeled with an orientation distribution function (ODF) that measures the volumes

of different crystallographic orientations. Two algorithms are used to sample the entire

microstructure space followed by machine learning-aided identification of a minimal

subset of ODF dimensions which is subsequently explored by targeted sampling.

Conventional optimizationmethods lead to a uniquemicrostructure rather than yielding
a comprehensive space of optimal or near-optimal microstructures. Multiple solutions

are crucial for the deployment of materials design for manufacturing as traditional

manufacturing processes can only generate a limited set of microstructures. Our data

sampling-based methodology not only outperforms or is on par with other optimization

techniques in terms of the optimal property value, but also provides numerous near-

optimal solutions, 3-4 orders of magnitude more than previous methods. Consequently,

the proposed framework delivers a spectrum of optimal solutions in the microstructure

space which can accelerate materials development and reduce manufacturing costs.
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Nomenclature

σ = volume averaged stress (in MPa)

ε = volume averaged strain

α = constant

q = volume normalization vector

r = orientation

V = null space vector

S = compliance (in 1/GPa)

C = stiffness (in GPa)

Ce f f = effective stiffness (in GPa)

A = orientation distribution function

χ = orientation dependent property

D = total number of dimensions of ODF vector

k = intended number of non-zero dimensions of ODF vector

1. Introduction

Exploring and harnessing the association between processing, structure, properties,5

and performance is a critical aspect of new materials exploration [1–8]. Variation in

microstructure leads to a wide range of materials properties which in turn impacts the

performance. The materials performance can be significantly improved by dovetailing

the microstructure [9–12]. Titanium alloys are used for airframe panels, and optimiz-

ing the property is necessary for the safety and performance of the aircraft [13–16].10

Furthermore, both the cost of the material and machining for Titanium panels are ex-

pensive [17, 18]. Titanium airframe panels are modeled as thin, rectangular, anisotropic

plates. However, the panels are exposed to elevated temperatures in moving devices.

Titanium is a lightweight, yet strong, uniquely versatile metal with properties such as

high tensile strength to density ratio, high corrosion resistance and ability to withstand15

high temperatures without creeping. In addition, Titanium is a very ductile material that

can be worked into many shapes. Titanium [19] has a very high melting point cap (3000
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degrees Fahrenheit) which makes it able to bear high-heat environments. Combination

of all these properties make Titanium alloys ideal for use in aircraft applications.

One of the major goals of materials design optimization is the trade-off of properties20

based on prioritizing one design goal over others [20, 21]. For microstructure opti-

mization, it can involve enhancing properties in one direction while sacrificing other

properties which are not as important for the design problem [22]. Techniques that

allow tailoring of properties of polycrystalline alloys involves selection of preferred

orientations of various crystals constituting the polycrystalline alloy. This paper ad-25

dresses the problem by tailoring crystallite distribution for specific optimization design

problems. The orientation distribution function (ODF) is used to quantify the mi-

crostructure [3, 23–25] which represents the volume fractions of crystals of different

orientations of the microstructure.

In this paper, we aim to explore the microstructure optimization of multiple design30

problems for a Titanium panel. Two different mesh sizes to represent ODFs are explored

in this work : 50 and 388. Three different properties: coefficient of expansion α,

stiffness coefficient C11 and yield stress σ are optimized. We use two algorithms -

allocation and partition to sample the entire microstructure space. There has been

several works on application of machine-learning for accelerated materials discovery35

and design of new materials with select engineering properties [26–37]. In this work,

we harnessmachine learning for microstructure search space reduction for identification

of a minimal subset of ODF dimensions which is subsequently explored by targeted

sampling. Our data sampling-based methodology not only outperforms or is on par

with other optimization techniques in terms of the optimal property value, but also40

provides numerous near-optimal solutions up to 3-4 orders of magnitude more than

previous methods.

2. Background and Related Works

The alloy microstructure is composed of multiple crystals with each crystal having

its distinct orientation. The orientation distribution function (ODF) is one representa-45

tion for depicting the volume fractions of the crystals for different orientations in the
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microstructure. In this work, the microstructure of Titanium panels is modeled using

ODFs [23–25, 38]. The ODF is a critical concept in texture analysis and anisotropy. The

ODFs are represented by axis-angle parameterization of the crystal lattice rotation in

the orientation space, as proposed by Rodrigues [39]. The Rodrigues’ parameterization50

is generated by scaling the axis of rotation n as r = ntan θ
2 , where θ is the rotation angle.

Orientation distributions can be described mathematically in any space appropriate to

a continuous description of rotations [23, 38, 39].

The orientation space can be scaled down to a subset called the fundamental region.

Each crystal orientation is depicted uniquely inside the fundamental region by a param-55

eterization coordinate for the rotation r . The ODF, represented by A(r), is the volume

density of crystals of orientation r . Each microstructural orientation is associated with

a nodal point ODF. The local scheme developed with the finite element discretization

is advantageous since it can represent sharp textures, including extreme cases such as

single crystals. The fundamental region is discretized into N independent nodes with60

Nelem finite elements and Nint integration points per element. A detailed explanation of

the ODF discretization and volume averaged equations has been provided in [9, 40–42].

A single particular orientation or texture component is represented by each point in the

orientation distribution. The orientation distribution information can be used to deter-

mine the presence of components, volume fractions and predict anisotropic properties65

of polycrystals.

3. Problem Statement

We aim to explore the microstructure optimization of multiple design problems

for a Titanium panel. Two different mesh sizes to represent ODFs are investigated in

this work : 50 and 388. Three separate properties: coefficient of thermal expansion70

α, stiffness coefficient C11 and yield stress σ are optimized. There are four different

design problems explored, and both the upper and lower bounds are solved. Figure

1 illustrates a section of Titanium aircraft panel and the corresponding microstructure

cross-section.

The ODF values are associated with an orientation of the microstructure. Using75
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Figure 1: Geometric representation of Titanium panel. E and G indicate the Young’s modulus and shear

modulus values around the corresponding directions, J is the torsion constant, m is the unit mass, L is the

length of the beam, and I1 is the moment of inertia along axis 1.

the ODF approach is advantageous since the averaged material properties over a mi-

crostructural domain can be computed using the homogenization (averaging) equations

which are linear with respect to the ODF values. This is true when the effects of crys-

tal size and shape are ignored, and homogenous deformity is assumed in the volume

element. Using the homogenization relation, the orientation-dependent averaged mate-80

rial property, < χ >, can be computed using the material property values at different

orientations, χ(r), and the ODF values, A.

< χ >=

∫
R

χ(r)A(r)dv,

where, the orientation is denoted by r . The ODF representation should satisfy the

following volume normalization constraint in the microstructural domain.∫
R

A(r)dv = 1

The optimization problems of interest aim to identify the best microstructure design

to enhance the material properties. Since the ODF values quantify the microstructural

texture, the goal is to identify the optimum ODF values for each problem. However, the85

ODF solution space is high-dimensional, and it leads to an optimization problem with

numerous design variables. Here, one favorable approach would be generating a new

solution space, which is called as property closure, which includes the complete range

of properties obtainable from the space of the ODFs. In property closure approach,

the material properties can be calculated with either upper or lower bound averaging90

assumption [40]. An example computation of property closure with upper and lower
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bounds approaches is shown in Figure 2 for stiffness (C11, C12 and C22) and compliance

(S11, S12 and S22) properties. The example computations for the averaged stiffness,

< C >, and compliance, < S >=< C−1 >, are given next for the upper and lower bound

approaches respectively.95

< C >=

∫
R

CAdv

< S >=< C−1 >=

∫
R

C−1 A−1dv

< S >=
∫
R

SAdv

150
85

160

80 190

170

C
22

 (G
Pa

)

180

180

C12 (GPa)

75

C11 (GPa)

170

190

70 160
65 150

Single crystal optimum design

5.5
0.016

6

6.5

C
22

-1
 (1

/G
Pa

)

#10-3

C12
-1 (1/GPa)

0.014

C11
-1 (1/GPa)

#10-3

6.5

6
0.012 5.5

70 80 90 100

(a) Property closure for stiffness (C11,C12

andC22) parameters

5.5
0.015

6.5

6

C
22

-1
 (1

/G
Pa

)

#10-3

0.014

C12
-1 (1/GPa)

#10-3

C11
-1 (1/GPa)

6.5

60.013
0.012 5.5

Single crystal optimum design

5.5
0.016

6

6.5

C
22

-1
 (1

/G
Pa

)

#10-3

C12
-1 (1/GPa)

0.014

C11
-1 (1/GPa)

#10-3

6.5

6
0.012 5.5

70 80 90 100

(b) Property closure for compliance (S11,

S12 and S22) parameters

Figure 2: Property closures inC and S (C−1) space for HCP Titanium. The color scale are represented inC

space in both plots.

In the present work, wewill utilize both upper and lower bound averaging techniques

to identify the optimum microstructure solutions. The material of interest is polycrys-

talline α-Titanium as shown in Figure 3 (a), red color shows independent orientations,

blue color shows dependent orientations resulting from the crystallographic symme-

tries. We will model this hexagonal close-packed (HCP) structure using 111 ODF100

values defined in the Rodrigues fundamental region as shown in Figure 3 (a). However,

we will only use 50 independent ODF values for modeling purpose since the remaining
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ODF values can be determined using the crystallographic symmetries. In Fig. 3 (b), a

finer finite element mesh, that can improve the numerical resolution of microstructural

texture representation, having 388 independent ODF values is illustrated.105

(a) ODF representation indicating the location of 50

independent nodes in the orientation space in red

(b) ODF representation indicating the loca-

tion of 388 independent nodes in the orien-

tation space in red

Figure 3: Finite element discretization of the orientation space of HCP Titanium.

In this work we solve for the best microstructure design that maximizes desired

properties which are coefficient of thermal expansion αx , stiffness coefficient C11 and

yield stress σy and satisfies the design constraints. The material properties of the

objective function are computed using the upper bound averaging approach. For design

constraints both upper and lower bound averaging approaches are utilized.110

Four design problems are presented in this work, and each of them is solved using

both upper and lower bound approach. Upper bound sub-problems for design problems

1 and 2 are solved inmesh sizes of both 50 and 388, while the lower bound sub-problems

are solved in 50 dimensions. Both the upper and lower bound design sub-problems 3 and

4 are solved in mesh size of 388. The finer mesh with the 388 ODF values is expected115

to provide a more accurate representation as the Rodrigues domain is discretized with

more variables. The design constraints of the optimization problems reflect certain

stiffness needs of engineering designs.

Problem 1:

7
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max αx

Upper Bound: (mesh dimension 50 and 388)

subject to 161 ≤ C11 ≤ 165 GPa (1a)
subject to 75 ≤ C12 ≤ 78 GPa (1b)

Lower Bound: (mesh dimension 50)

subject to 0 ≤ C11 ≤ 125 GPa (2a)
subject to 90 ≤ C12 ≤ 95 GPa (2b)

120

Problem 2:

max C11

Upper Bound: (mesh dimension 50 and 388)

subject to 75 ≤ C12 ≤ 78 GPa (3)

Lower Bound: (mesh dimension 50)

subject to 90 ≤ C12 ≤ 95 GPa (4)

Problem 3: (mesh dimension 388)

125

max σy

Both Bounds:

subject to ≤ S11 ≤ 0.15 1/GPa (5a)

subject to ≤ S22 ≤ 0.1 1/GPa (5b)

Problem 4: (mesh dimension 388)
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max σy

Upper Bound:

subject to 120 ≤ C11 ≤ 130 GPa (6a)

subject to 90 ≤ C12 ≤ 95 GPa (6b)

subject to 0 ≤ S11 ≤ 0.15 1/GPa (6c)

subject to 0 ≤ S22 ≤ 0.1 1/GPa (6d)

Lower Bound:

subject to 0 ≤ C11 ≤ 125 GPa (7a)

subject to 0 ≤ C12 ≤ 75 GPa (7b)

subject to 0 ≤ S11 ≤ 0.15 1/GPa (7c)

subject to 0 ≤ S22 ≤ 0.1 1/GPa (7d)

It is important to note that the set of constraints are representative examples, and130

actual constraints may differ from them in the real design. However, it was ensured

that the design constraints resembled real-world problems. Apart from the specific

set of design constraints for the problem, they should also obey the following generic

constraints.

A≥0135 ∫
Adv = 1

4. Method

The proposed methodology is divided into two phases. In the first phase, a data

repository is created using two sampling algorithms. In the second phase, we evaluate

which combinations of ODF dimensions lead to optimal solutions by machine learning.140

The following flow-diagram illustrates the overall methodology.
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Figure 4: Flow diagram of our methodology. The green arrows depict the data generation process, and the

orange arrow signifies the feedback-aware sampling.

4.1. Data Generation

Two data generation algorithms are explored for dataset creation, namely partition

and allocation [22]. In the first step, we run our data-generation algorithms to generate

around 5 million valid solutions for each set of constraint.145

Partition. In this method, a unit length is partitioned into k small segments, where

k >1 and can vary between 2 to D. D is the total number of dimensions for the ODF

and k is the intended number of non-zero dimensions. For HCP Titanium structure, D

is 50 for coarse mesh and 388 for finer mesh. We consider the unit length 1 divided

into k random intervals or making k-1 random cuts between the interval [0,1]. For k=2,150

there is one random cut possible but that cut can be anywhere between [0,1] and we

would have an ODF with 2 non-zero dimensions. Similarly for k=3, there be 2 random

cuts and so on till k=D. We run the sampling for each value of k, and then for each

k, we run it several times so as to generate multiple ODFs for the given number of

cuts/dimensions.155

Allocation. This randomly generates k values at a time, where k can vary between 1 to

D, where D is the number of dimensions for the ODF vector. In this algorithm, k is the

intended number of non-zero dimensions for the ODF, and D − k dimensions are set

to 0 for the given density function (df) vector. The sum of the product of the volume
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fraction (vf) and df across each dimension must add up to 1. Therefore, we continue160

selecting a value until k values are selected, or the remainder is sufficiently small. k=1

is the trivial case in which the product of the vf and df equal to 1.

The idea behind all the data generation algorithms is based on the heuristic that in

a valid microstructure obeying all the constraints, only a few dimensions in the ODF

vector are non-zero. However, these methods are complementary to each other and try165

to sample the entire feature space. While the allocation method tries to find a minimal

subset of ODF dimensions that would be non-zero generating a polycrystal solution, the

partition method seeks to widen the search across all the dimensions - 50 for Problems

1 and 2, and, 388 for Problems 3 and 4.

4.2. Feedback Aware Sampling170

In the first phase of our methodology, we had generated a dataset using two sampling

algorithms. In the second phase, we attempt to investigate which combination of non-

zero ODF dimensions lead to optimal or near-optimal solutions. For this purpose, we

select the top 10 % and bottom 10 % based on the desired design objective and label

them as ‘High’ and ‘Low’, and perform random forest-based [43] machine learning175

models on this data subset, where the ODFs become the feature vector. For instance,

in design problem 1, as the objective was maximizing the coefficient of expansion αx ,

ODF vectors yielding the highest 10 % and bottom 10 % of αx are labeled as ‘High’

and ‘Low’. Random Forests are ensemble learning methods that construct multiple

decision trees [44] to predict the output, and the prediction is decided by a vote across180

the ensemble of decision trees.

The motivation behind this step is to evaluate ODF dimensions which are important

for generating optimal solutions. This step extracts the features that are most important

for generating ‘High’ values. However, as the target is to generate a polycrystalline

solution, we proceed to the second iteration of sampling. However, during this step,185

instead of sampling across all ODF dimensions, we select only those dimensions that

are advantageous in providing near-optimal solutions.
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Table 1: Number of solutions within 0.01%, 0.02%, 0.05% and 1% of the optimal solutions for the fourth set

of constraints

ML-Guided Sampling

Bound Mesh Size within 0.01% within 0.02% within 0.05% within 1%

Upper 388 140 280 759 1.255x103

Lower 388 0 6.223x103 1.078x105 1.084x105

Table 2: Comparison of coefficient of expansion αx , and stiffness parameters (C11 and C12) between

traditional optimization approaches and ML-Guided Sampling for design problem 1 (Equations 1, 2)

.
Bound Mesh Size Linear Programming and Genetic Algorithm ML-Guided Sampling

αx(in 1/K) C11(in GPa) C12(in GPa) αx(in 1/K) C11(in GPa) C12(in GPa)

Upper 50 8.5506x10−6 161.0000 75.0000 8.4903x10−6 161.0631 75.0450

Upper 388 8.8560x10−6 161.0000 75.0000 8.8392x10−6 161.0519 75.0486

Lower 50 9.3682x10−6 126.6925 90.0000 9.3790x10−6 129.9803 91.6693

5. Results

In this section, we evaluate the data-driven approach proposed in this paper for

generating optimal and near-optimal solutions. The proposed method is comparable to190

solutions produced by prior state-of-the-art techniques and delivers numerous optimal or

near-optimal solutions with distinct microstructure designs. The near-optimal solutions

for this problem correspond to different microstructure configurations having same or

similar values for yield stress. Furthermore, in our study, several different objectives

are solved, and the proposed approach is successful for both coarse (50 dimensions)195

and fine (388 dimensions) meshes for HCP Titanium. Table 1 presents the total number

of near-optimal solutions, or in other words, solutions that are proximal to the optimal

solutions.

Acar et al. in their previous works [40, 41] used a genetic algorithm based scheme to

solve the upper bound problem. In [42], the upper bound approach was transformed to200

a lower bound approach by converting the problem from stiffness domain to compliance

(reciprocal of stiffness) domain and thereby transforming a non-linear problem into a
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Table 3: Comparison of stiffness parameters (C11 andC12) between traditional optimization approaches and

ML-Guided Sampling for design problem 2 (Equations 3, 4)

.
Bound Mesh Size Linear Programming and Genetic Algorithm ML-Guided Sampling

C11(in GPa) C12(in GPa) C11(in GPa) C12(in GPa)

Upper 50 167.8562 75.0000 167.8538 75.0013

Upper 388 170.2609 75.0000 169.8015 75.0049

Lower 50 144.2199 95.0000 144.1442 94.9546

Table 4: Comparison of yield stress (σy ) and compliance parameters (S11 and S12) between traditional

optimization approaches and ML-Guided Sampling for design problem 3 (Equation 5)

.
Bound Mesh Size Linear Programming and Genetic Algorithm ML-Guided Sampling

σy(in MPa) S22(in 1/GPa) S12(in 1/GPa) σy(in MPa) S22(in 1/GPa) S12(in 1/GPa)

Upper 388 423.9396 0.0071 0.0098 423.9396 0.0071 0.0097

Lower 388 423.8462 0.0150 0.1073 422.8327 0.0200 0.0999

Table 5: Comparison of yield stressσy , stiffness parameters (C11,C12), and compliance parameters (S11 and

S22) between traditional optimization approaches andML-Guided Sampling for design problem 4 (Equations

6, 7)

.
Bound Approach Mesh Size Linear Programming and Genetic Algorithm

σy(in MPa) C11(in GPa) C12(in GPa) S11(in 1/GPa) S22(in 1/GPa)

Upper LP 388 421.8096 175.0000 69.6976 0.0075 0.0095

Upper ML 388 421.8094 174.9997 69.6976 0.0074 0.0094

Lower GA 388 423.6050 124.8043 78.3030 0.01612 5.8017x10−8

Lower ML 388 422.8341 119.8148 80.7035 0.0200 0.0999
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linear problem that is LP-solvable. In [22], a data-driven approach for arriving at a near-

optimal solution was expounded for upper and lower bound problems for optimization

of the yield stress of cantilevered Galfenol beam under vibrational constraints. The205

proposed work improves on the previous methodology by identifying a minimal subset

of ODF dimensions using machine learning.

For the upper and lower bound approaches, our solutions are compared against the

genetic algorithm based scheme and LP-based methods respectively. The proposed data

sampling approach based on the sampling algorithms surpassed the yield stress obtained210

from genetic algorithm based solver for the upper bound approach. Additionally, the

results for the lower bound are comparable to the optimal values achieved by the LP

method. It is important to note that only the LP solution (used for the lower restricted

approach by Acar et al. [42]) yields the theoretical maximum value in contrast to the

genetic algorithm solver scheme used by them for the upper bound approach [40].215

Figures 5,6 represent the frequency distribution for the feedback-driven data-generation

of coefficient of expansion and C11 for upper (mesh sizes 50 and 388) and lower bounds

(mesh size 50) for first set of constraints (Equations 1, 2) for ML-Guided sampling. A

comparison of the frequency distribution of the ML-agnostic overall sampling process

with the ML-guided sampling indicates the efficacy of the ML-guided approach to220

effectively extract the non-zero ODF dimensions suitable for more optimal solution.

Without an ML-guided approach, it would become increasingly intractable to identify

which combinations of ODF dimensions should be non-zero for generating optimal

solutions.

Figures 7, 8 illustrate finite element discretized sensitivity ODF cross-sections225

(mean and standard deviation) and frequency distribution of the maximal desired values

across ODF dimensions for design problem 1 and 2. The frequency plots of the ODF

dimensions for the top 1% values indicate that there are certain dimensions that are

more likely to be non-negative for producing near-optimal solutions as compared tomost

other dimensions. Thus, ML-guided sampling helps to isolate those dimensions and230

in particular, isolate those combinations of dimensions that are non-zero for generating

near-optimal solutions.

The frequency distribution and sensitivity plots for design problems 3 and 4 are
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(a) upper bound (mesh size 50)

(b) upper bound (mesh size 388)

(c) lower bound

Figure 5: Frequency distribution of coefficient of expansion for upper (mesh sizes 50 and 388) and lower

bounds (mesh size 50) for first set of constraints (Equations 1, 2) for ML-Guided sampling. The overall

frequency distribution of entire sampling process is presented inset.
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(a) upper bound (mesh size 50)

(b) upper bound (mesh size 388)

(c) lower bound

Figure 6: Frequency distribution ofC11 for upper (mesh sizes 50 and 388) and lower bounds (mesh size 50)

for second set of constraints (Equations 3, 4) for ML-Guided sampling. The overall frequency distribution

of entire sampling process is presented inset.
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(a) upper bound (mesh size 388)

(b) upper bound (mesh size 50)

(c) lower bound

Figure 7: Finite element discretized sensitivity ODF cross-sections (mean and standard deviation) and

frequency distribution(inset) of the highest 1% yield stress values across ODF dimensions for design problem

1.
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(a) upper bound (mesh size 388)

(b) upper bound (mesh size 50)

(c) lower bound

Figure 8: Finite element discretized sensitivity ODF cross-sections (mean and standard deviation) and

frequency distribution(inset) of the highest 1% yield stress values across ODF dimensions for design problem

2.
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presented in the Appendix. Examples of finite element microstructure (FEM) cross-

sections of near-optimal ODF solutions for all four objective problems are presented in235

the Appendix. The potential of our methodology to produce many optimal solutions for

the upper bound sub-problem in the neighborhood of the LP solution for design problem

1 and 2 for both mesh sizes demonstrate that our method can be advantageous for any

mesh size. Nonetheless, more finer the mesh or more the number of dimensions in an

ODF, anML-guided approach becomes more imperative to generate many near-optimal240

solutions.

6. Conclusion and Future Work

The selection of materials and geometry to optimize desired properties has been a

cardinal problem in materials science. The proposed strategy expounds the potential

of data-driven approaches for solving a constrained microstructure design objective245

for both upper and lower bound problems. It outperforms the maximum solutions

obtained using Genetic algorithms and is close to the theoretical maximum solution

obtained using LP. The proposed targeted sampling approach first explores the entire

sample space and then selectively generates solutions that optimize the given design

objective. It generates numerous near-optimal solutions, 3 to 4 orders of magnitude250

higher than prior methods. Past methodologies including LP techniques lead to a unique

or handful of optimal solutions. One of the challenges of inverse materials problems is

establishing production feasibility of proposed microstructure design. Many cost-aware

manufacturing processes can generate specific microstructures and thus, discovering

hundreds of thousands of optimal microstructures can help identify more cost-effective255

candidates for design, thereby accelerating the design to deployment step.

The analysis of constrained microstructure optimization problems depicts that cer-

tain combinations of ODF dimensions are non-zero more often in the ODF vector of the

near-optimal solutions. Further, a subset of these combinations usually generate ODFs

that preferentially produces more near-optimal solutions compared to other combina-260

tions. The success of this and similar works reveal the potential of data-driven methods

for property predictions of different materials and different design constraints, and for
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both upper and lower bound problems. Leveraging data-driven techniques can play an

essential role in the expedition of precise design of materials with process constraints.

This study demonstrates the power of carefully designed sampling approaches to iden-265

tify numerous near-optimal solutions for a constrained non-linear optimization problem

and can prompt the development of alternative sampling schemes that can reach optimal

solutions faster and deliver numerous near-optimal solutions. The sampling schemes

are generalizable and agnostic of the problem domain and can be used in other scientific

domains as well.270
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(a) upper bound

(b) lower bound

Figure 9: Frequency distribution of yield stress for upper and lower bounds for third set of constraints

(Equation 5) for ML-Guided sampling. The overall frequency distribution of entire sampling process is

presented inset.
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(a) upper bound

(b) lower bound

Figure 10: Frequency distribution of yield stress for upper and lower bounds for fourth set of constraints

(Equations 6, 7) for ML-Guided sampling. The overall frequency distribution of entire sampling process is

presented inset.
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(a) upper bound

(b) lower bound

Figure 11: Finite element discretized sensitivity ODF cross-sections (mean and standard deviation) and

frequency distribution(inset) of the highest 1% yield stress values across ODF dimensions for design Problem

3.
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(a) upper bound

(b) lower bound

Figure 12: Finite element discretized sensitivity ODF cross-sections (mean and standard deviation) and

frequency distribution(inset) of the highest 1% yield stress values across ODF dimensions for design Problem

4.
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(a) upper (mesh size 50)

(b) upper (mesh size 388)

(c) lower

Figure 13: Finite element microstructure cross-sections for examples of near-optimal ODF solutions for

design problem 1 (Equations 1, 2)
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(a) upper (mesh size 50)

(b) upper (mesh size 388)

(c) lower

Figure 14: Finite element microstructure cross-sections for examples of near-optimal ODF solutions for

design problem 2 (Equations 3, 4) 31
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(a) upper

(b) lower

Figure 15: Finite element microstructure cross-sections for examples of near-optimal ODF solutions for

design problem 3 (Equation 5) 32
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(a) upper

(b) lower

Figure 16: Finite element microstructure cross-sections for examples of near-optimal ODF solutions for

design problem 4
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