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A B S T R A C T

Servicing claims, a time consuming and labor-intensive task, plays a pivotal role in how insurance companies
serve their policyholders. Claims may not get routed early enough in the process to the correct team, leading
to dissatisfied customers because of inefficient claim’s management. Claims departments need to process
substantial amount of structured and unstructured data to successfully route claims — a process referred to
as channeling. The scope of the present work is limited to the auto insurance claims with a focus on four
different downstream classification tasks including claims’ fraud and bodily injuries. We propose a system that
utilizes claims’ notes and structured data to build machine learning models, which employ an insurance-based
language model built by enhancing Google’s BERT, to route claims to domain experts. The proposed channeling
system successfully routes important claims to domain experts for additional review, which can substantially
improve claims management and customer satisfaction.
1. Introduction

When an insurance policyholder suffers a loss, the process can be
very stressful. Not only has the policyholder experienced a traumatic
event, but they have to communicate about the event as well as
continue following up with their insurance company to ensure their loss
is covered and they can be properly indemnified. During this important
and stressful time, how an insurance company manages policyholder
claims is critical. According to J.D. Power & Associates, claims cycle
time is a leading indicator of customer satisfaction (Effler, 2019).
Claims cycle time is the time it takes to settle and close an insurance
claim, from the day it is opened also referred to as the first notice
of loss (FNOL). A primary motivation for insurance companies is to
reduce claims cycle time and improve customer satisfaction. This can
be achieved by developing an automated system that correctly routes
claims to appropriate claims personnel.

Insurance companies offer services to their policyholders in a vari-
ety of domains like life, health, auto, home, commercial, etc. In this
work, we focus on auto claims — which generally involve incidents re-
lated to vehicles and their occupants. When an auto policyholder suffers
a loss, they report the incident to their insurance company providing
a detailed account of the incident to a customer representative such
as the date of the loss, loss location, what caused the loss, as well as
what loss was suffered. Throughout the claims process, detailed notes
are entered into an internal claims system by various groups such as
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the customer care center, claims adjusters, and special investigations
unit (SIU). These detailed unstructured notes are referred to as claim
notes.

Claims in their inherent nature contain diverse types of information
covering a range of different situations. For instance, a claim could be a
collision on a highway where the vehicle was severely damaged, a few
people were injured and an attorney was hired. The same claim can
have three different labels — total loss of the vehicle, bodily injury, and
attorney retention respectively. Therefore, claims classification can be
treated as a multi-label classification problem. Claims develop over a
period of time and not all information is available on the day when
the loss occurred. Especially, when multiple customers are involved
the information can keep updating for a few days. For the majority of
the time, only text information gets appended/updated. In some cases,
when a claim has more than one potential label associated with it,
domain experts (claim adjusters) from various areas may need to work
together to quickly service the claim and help the customer.

This work is focused on four different claims problems. First, total
loss — indicates whether a vehicle is to be deemed as total loss or it
should be repaired. If a vehicle is considered a total loss, it is sent to
salvage yard, otherwise if it is repairable, it is sent to body shops for
repair. Claims that are incorrectly classified as total loss but the vehicle
is actually repairable, can be very costly to the insurance company.
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Second, bodily injury — indicates if there are any injuries associated
with the claim or not. If yes, what is the severity of the injuries.
Third, attorney retention — indicates if there will be any attorneys
involved in the claim or not. Last, fraud investigation — indicates if
a claim should be investigated for potential fraud or not. Based on the
aforementioned problems, claims can be routed to appropriate domain
experts (e.g., claim adjusters or SIU) who interact with the customers
and help them throughout claims process.

To build predictive models both structured and text data (claim
notes) are utilized. For text data, various deep learning techniques have
been used by researchers. In this work, TFIDF (Ramos et al., 2003),
word embeddings (Chalkidis & Kampas, 2019; Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013; Pennington, Socher, & Manning, 2014),
LSTM based approaches and more recently developed language mod-
els have been used for experimentation. For the language model,
BERT (Devlin, Chang, Lee, & Toutanova, 2019), a bi-directional lan-
guage model built on general purpose corpus (Wikipedia and BooksCor-
pus (Zhu et al., 2015)) using transformer (Vaswani et al., 2017) based
approach is used. BERT performs better than other word embedding
based approaches for many different natural language processing (NLP)
specific tasks. However, an insurance corpus is different from general
purpose corpus. In our previous work (Dimri, Yerramilli, Lee, Afra, &
Jakubowski, 2019), this issue was addressed by further pre-training the
BERT model with enhanced insurance specific corpus and claim notes.
It was observed that incorporating insurance-based domain knowledge
into the language model performs better than using the language model
out-of-the-box. We refer to this enhanced model as an Insurance-Based
Language Model (IBLM). However, in Dimri et al. (2019) we explored
a single-label (different models for different kinds of claims), single-
input (text-based) approach. In this work, a multi-input strategy to
incorporate both text and structured data is adopted to improve the
efficacy of the models. As new text data gets appended in the first few
weeks, models for day 1, 5 and 10 are built respectively. This ensures
that a claim get scored as soon as it is opened (day 1) and also on
further days when more up-to date information is available.

Ideally, claims where severe injuries or major accidents are re-
ported should be addressed manually. After getting predictions from
the model(s), claims are channeled by calculating a claim score. The
claim score is calculated by weighing predictions based on the type of
classification problem, model accuracy, days since the claim is opened,
severity of the incident associated and other domain heuristics. For
example, a claim which is a potential fraud or where attorneys are
hired take a long time to get closed and can be costly to the insur-
ance company, should have precedence over a claim which has minor
injuries associated with it. Based on these domain heuristics, the claims
are ranked. A select number are chosen for routing based on personnel
capacity. Through the channeling system we envision to streamline the
claims process and let the domain experts review a subset of claims
which are important. This would not only help the adjusters to focus
on important claims but also help the customers in a timely manner.

As previously noted, claims data changes with time. Models can be
built off of data available at different days following the occurrence
of the claim. We have observed that day 10 model performed better
than day 5 and day 1 models. This is because day 10 model has
more information available and the information is more up to date
than previous days. The multi-input strategy (text + structured data)
performed better than structured only and text only models for majority
of problems. We refer to multi-input (text + structured) data model
as combined model in the rest of the paper. When compared to their
binary counterparts, the multi-label models performed equally well and
in the case of fraud, multi-label outperformed the binary approach. The
channeling approach introduced in this work calculates claim score us-
ing predictions, domain heuristics and injury severity information, has
a high recall for claims which have multiple positive labels associated
with them and are more important as compared to claims having single
2

positive labels. A web application is also built which hosts the models,
the channeling system and routes the claims to appropriate domain
experts.

In summary, our contributions are as follows -

1. Trained multi-label models for different days using structured,
text and combined data for four different insurance classification
problems — Total loss, Bodily Injury, Attorney retention and
Fraud investigation detection. Used insurance based language
model to process the text data.

2. Compared the multi-label approach with an equivalent binary
approach for combined model.

3. Trained a multi-class injury severity model using text data which
helps in differentiating between bodily injury claims.

4. Designed a channeling approach which combines predictions
from different models across days to calculate claim score and
route the claims to domain experts.

5. Designed a web based user interface to serve the best model(s)
and channeling approach to route claims to domain experts.

The rest of the paper is organized as follows - Section 2 talks about
related work and Section 3 contains the overview of our complete
channeling system. Details around data used in this work are presented
in Section 4, followed by different approaches for modeling and chan-
neling claims in Section 5. Results are presented in Section 6, followed
by the Discussion Section. Section 8 contains details for our web based
user interface. Conclusion is presented in Section 9.

2. Related work

Recent advances in deep learning have led to many state-of-the-
art algorithms in various computer vision and natural language pro-
cessing (NLP) tasks. Especially in text classification, counting tech-
niques like TFIDF (Ramos et al., 2003), word embedding based ap-
proaches (Chalkidis & Kampas, 2019; Mikolov et al., 2013; Penning-
ton et al., 2014) have been used as standard techniques but they
lack contextual information. This was soon replaced by context-based
embeddings (Peters et al., 2018) and then ultimately by language
models (Devlin et al., 2019; Howard & Ruder, 2018). Language models
involve a pre-training step which can be done on a large general-
purpose domain corpus with one or more objectives and then using
transfer learning, it can be further trained on context-specific target cor-
pus for different downstream tasks. Further, pre-training the language
models on target domain corpus has led to a further increase in the
performance of several downstream tasks (Dimri et al., 2019; Lee et al.,
2020).

There have been several applications of NLP and deep learning for
claims handling problems. Kolyshkina and van Rooyen (2006) study the
impact of textual information in claims cost prediction for an Australian
insurance company. They utilized simple word count-based features
in ensemble CART decision tree models and found that models that
include textual information outperformed models without it. Popowich
(2005) used a part-of-speech based NLP concept matcher on a corpus
consisting of management notes, call center logs and patient records for
identifying medical claims that require further investigation. Wang and
Xu (2018) harnessed Latent Dirichlet Allocation (LDA) for extracting
textual features, and then developed a multi-input model that utilized
both text features as well as structured data for detecting claims fraud.
Sabban, Lopez, and Mercuzot (2020) considered claims severity as a
binary problem, where most claims are not severe. First, they utilized
balanced bagging for oversampling rare severe claims to create a less
imbalanced dataset. Then, they experimented with traditional ML tech-
niques as well as Convolutional Neural Networks (CNNs) and LSTMs
with FastText embedding for predicting if a claim is severe or not.

In our previous work (Dimri et al., 2019), we introduced IBLM
which is a general domain language model (BERT (Devlin et al., 2019))
that is further pre-trained using insurance specific corpus with en-

hanced vocabulary. For downstream classification tasks, we used claim
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Fig. 1. Channeling System: Illustrates the flow of claims through the modules that constitute the claims channeling system. The best model is chosen across input types and
modeling approaches. The predictions obtained from the best model is weighed using weights proposed by domain experts to generate the claim score in the scoring engine. Based
on claim score, claims are routed to domain experts or scored next day with updated data.
notes only and considered different claims problems as separate binary
classification tasks. As claim notes change over time, we built models
for day 1 and day 10 only. In this work, we combine structured data
with claim notes, treat claims as a multi-label classification problem,
introduce total loss and claim severity as new tasks and increase the
granularity of the models by training model for day 5 also. We also
introduce claims channeling system which consumes the predictions
from the different models as inputs which scores each claim based on
which the claims are routed to the appropriate domain experts.

3. Channeling system overview

The information used as input to the channeling system comprises
of both structured and unstructured data. Structured data includes
vehicle, claim, and loss details. Unstructured data is in the form of claim
notes which contain detailed information about the event that led to
the filing of the claim and other details may continue to be added until
the claim is closed. Using all the data mentioned, machine learning
models are built and used to predict different labels associated with the
claim and then route them to domain experts (claim adjusters) using
our channeling approach, which would help the customers throughout
the claim life cycle as shown in Fig. 1.

The input data is pre-processed before being fed into the channeling
system. For claim notes, pre-processing includes removal of stop words,
email addresses, unicode, and digits (phone numbers, numeric part of
addresses, zip codes, etc.). For the structured data, categorical fields
are converted into one-hot vectors. As mentioned previously, not all
information is available on the day the claim is filed. Claims data
evolves over time. This is especially true for claims notes. Therefore,
different machine learning models are built for claims notes accumu-
lated through day 1, day 5, and day 10. After day 10, the updates to
claim notes are reduced drastically, so no models are built after day 10.

A claim can have multiple labels associated with it. As mentioned,
in this work we limit our labels to total loss, bodily injury, attorney
retention, and fraud investigation. Multi-label models are built for
structured data, text data, and combined (text + structured) data for
day 1, 5 and 10, respectively. If an injury is associated with a claim it
is of prime importance to know the severity of the injury. The injury
severity is a multi-class problem containing four classes — superficial,
minor, moderate, and fatal. A multi-class classifier is built to predict
the severity of the injury as well. The NLP engine shown in Fig. 1 is
responsible for building all the text-based models.

After getting predictions from different models the best model
across input types and modeling approaches is chosen using the model
selection engine. The predictions from the best models across days are
combined using domain-specific knowledge to get a holistic view of
3

a claim. E.g., a claim having multiple labels associated with it is of
more importance than a claim having a single label. Similarly, a claim
having fatal injuries is more important than superficial injuries. Using
domain knowledge, problem type, severity information, and days since
the claim is opened, the scoring engine calculates a claim score for each
claim. As the claims need to be reviewed manually by adjusters, only
a small fraction of all the claims can be routed to them. Claim score
is used to rank the claims in order of their importance. If it is above
a certain threshold, they are routed to the adjusters. Else, the claim is
scored the next day if it has updates in its inputs using the appropriate
day model. The details of the complete system is shown in Fig. 1.

4. Data insights

In this section, we talk about the data used in this work in more
detail. We focus on auto claims only which contains structured and
unstructured data. The structured data mainly contains information
related to the insured person and details around their insurance policy.
The unstructured data is the raw body of text called claims notes,
which contains information ranging from the description of the loss
occurrence to information about various parties involved in the claim.
It contains information about activities related to servicing the claim
and much more. More importantly, claims notes hold rich information
beyond what is captured in the structured data. In Section 4.1 we
introduce Claims Life Cycle which describes detailed claims processing.
Section 4.2 has insights around distribution of the data.

4.1. Claims life cycle

Fig. 2 represents the life cycle of a particular claim highlighting
what information is appended and when since an incident is reported
till the claim is closed. The exact details might vary for every incident.
An example of the progression of claims notes with time for a particular
incident is shown in Fig. 2. Once an incident is reported, immediately
you might have vehicle information like year, make, model, color,
registration details of the vehicles involved, the driver and passenger
details, location, date, and time of the accident. Further, information
around insurance and contact information of the other party involved
in the accident is also populated. Sometimes, a police complaint is
also filed. In a few days following the accident more information
like a detailed description of the accident, witness statements, the
speed, weather, and road conditions are added. Once a claim is filed
and a claim adjuster (domain expert) is assigned to the case, more
information regarding claims processing is added. For example, pictures
of the accident, policy details of the people involved, police report
number, etc. Vehicle inspection is also done which provides detailed
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Fig. 2. Claims life cycle: An example of what data gets added during claim processing for one particular claim on a weekly basis.
Table 1
Binary label distribution for different claims classification
problem.

Label 0 1

Total Loss 80.81% 19.19%
Bodily Injury (BI) 89.26% 10.74%
Attorney 93.28% 6.72%
Fraud 99.04% 0.96%

information on the damages done to the vehicle. Adjusters can ask
for more details about the incident, leading to multiple back and
forth communication between insured and adjusters. Claims notes are
updated with this information making them more informative. As the
processing progresses over days other information like cost estimates
of repair, evaluation of the losses, medical records, and bills, details of
the attorney involved if any might be added to the claims notes. Once
actual repairs to the vehicle are done, all the payments are done and
the claim is finally closed.

4.2. Data distribution

Insurance claims classification is a multi-label problem. Not only
can a claim have multiple labels, but also having a positive class on
any label makes it more likely to be positive for another. Therefore, for
each claim, the claims handling process ascertains if a claim is a total
loss or not, has injuries or not, requires attorney attention or not, and
if it needs to be sent for fraud investigation, with 1 signifying if it is
positive for that claim. Table 1 presents the class distribution of all the
four labels. It is observed that the total loss label is less imbalanced
than bodily injury (BI), which in turn is less imbalanced than attorney
and fraud. As modern automobile design is geared towards passenger
safety, during major crashes, the automobile may have total loss but
there may not be any bodily injury to the passengers. Further, by their
very nature, claims that require attorneys to be involved or require
attention from the Fraud Special Investigation Unit (SIU) unit are less
common but are very important for insurance companies. Moreover,
a claim that requires an attorney likely involves a bodily injury, and a
claim deemed to be handled by Fraud SIU is very likely involving some
attorney investigation or BI or both.

All the datasets presented in this paper are for a 6 month period
from July 2018 to December 2018. The dataset comprises of struc-
tured/tabular data and unstructured data in the form of claim notes.
As claim notes evolve over time their lengths keeps on increasing.
Table 2 depicts the quantiles of the number of tokens per claim across
different days. We see that as days pass by the length of the notes keep
increasing. However, the increase in length of claim notes is more from
4

Table 2
Distribution of length of claim notes across days. As days increase, the
length of notes also increases.

Quantile Day1 Day5 Day10

5% 34 45 46
25% 151 185 189
50% 235 282 293
75% 340 485 573
95% 622 1104 1460
99% 959 1721 2266
100% 5603 7245 7245

Table 3
Class Distribution for different injury severity (BI
Severity) claims.

Class Percentage

Superficial 20.23%
Minor 62.78%
Moderate 13.91%
Complex/Fatal 3.08%

day 1 to day 5 as compared to day 5 to day 10. We observe that the
distribution is very right-skewed as the length quantiles for 95% is very
different from that of 99% which in turn is very different from the 100%
- number of tokens in the longest claim.

As observed in Table 1, less than 11% claims have a positive BI
label. Once injuries are associated with a claim, getting to know the
severity of the injuries is of prime importance. This is because a claim
involving a serious bodily injury or injuries involving hospitalization
has to be handled with urgency compared to a claim with a superficial
injury. The BI severity consists of four different classes and their
distribution in the ascending order of severity of injuries is presented
in Table 3.

5. Methodology

This section is divided into two parts — Modeling approach and
Channeling approach. Modeling approach contains the approaches
taken to build different machine learning models based on structured,
text and both of them combined. The methods used to combine predic-
tions from models to get a claim score to rank the claims based on their
importance is discussed in the channeling approach subsection.

5.1. Modeling approach

As claims data comprises of both structured (tabular) and text
data, they are modeled separately as well as together (combined). For
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structured only data, the performance of the XGBoost model (Chen &
Guestrin, 2016) and a two-layer dense network was compared. For
text-only models, TFIDF, LSTM, BiLSTM, and language models were
built and compared. Different configurations, architectures of the above
models were evaluated and the hyperparameters were tuned before
finalizing them. We tried random search for tuning different set of
hyperparameters for different approaches presented in this work. We
chose the best set of hyperparameters to perform our final set of
experiments. Details are in 6.

The first approach considered for structured data is XGBoost (Chen
& Guestrin, 2016). It is an ensemble learning approach in which the
resultant strong classifier aggregates the outputs from multiple weak
classifiers. XGBoost implements the gradient boosting algorithm for
decision trees. The second approach used to model structured data is a
two-layer dense network.

In this paper, for text data, logistic regression is used as the machine
learning algorithm and TFIDF statistics are used as input features.
TFIDF (Term Frequency Inverse Document Frequency) (Ramos et al.,
2003) calculates the product of the frequency of a given word in a
document with the inverse document frequency. GloVe (Global Vec-
tors) (Pennington et al., 2014), a popular word embedding technique
along with LSTM and BiLSTM is also used in this study and the
results are compared. GloVe incorporates global statistics (word co-
occurrences) along with local statistics to generate word vector repre-
sentations. LSTM and BiLSTM are types of Recurrent neural networks
(RNNs) (Hochreiter & Schmidhuber, 1997) have connections that have
loops or recurrent connections which allow for feedback and memory
to the networks over time. This makes them effective for sequence
prediction problems such as text classification.

More recently, language models have been used in many NLP
related tasks and have achieved state of the art performance. Language
models captures complex features of the corpus and take context into
account when generating embeddings. In this work, BERT (Devlin
et al., 2019) is used, which is a bidirectional language model based on
Transformers (Vaswani et al., 2017) with two pre-training objectives.
First, masked language model (MLM) which randomly predicts masked
words in a sequence. Second, next sentence prediction (NSP) which
predicts whether one sentence follows another in the corpus. BERT
is trained on a general purpose corpus using English Wikipedia and
BooksCorpus (Zhu et al., 2015).

As insurance corpus is very different from general purpose corpus,
BERT is further pre-trained using insurance corpus with enhanced
vocabulary in our previous work (Dimri et al., 2019), and referred to
as IBLM. Once the language model is pre-trained, it can be used for
different insurance classification tasks with slight architecture changes.
IBLM (Dimri et al., 2019) is fine-tuned in a multi-label fashion for our
problem across different days.

Another model is trained that combines text and structured data
together. The detailed model architecture is shown in Fig. 3. The text
branch is comprised of an IBLM, followed by a linear layer which
outputs a 500 dimensions vector. The structured data branch comprises
of a two layer dense network. The outputs from the text branch
(500 dimensions) and structured data branch (100 dimensions) are
concatenated together and passed through a linear layer (500 + 100
= 600 dimensions). The final output consists of four neurons, each
corresponding to a different label (total loss, bodily injury, attorney
retention and fraud). Each layer is followed by a 𝑡𝑎𝑛ℎ activation layer.
Different number of layers, activation functions, number of neurons
were considered before finalizing the above architecture. Further, there
is an option of training the complete model as shown in Fig. 3 or to
treat the text branch as a fixed encoder and not train it by freezing its
weights.

We stick with a two layer network in the structured branch because
our main aim is to find out whether combining text and structured
data together will have better performance on different insurance
classification tasks than having separate text model and structured data
5

Fig. 3. Combined model architecture : combines the text data branch and structured
data branch. The text branch consists of Insurance Based Language Model (IBLM)
followed by a linear layer. The structured data branch consists of a two layer network.

model. Further from an application point of view, deeper networks
will increase latency of the model at prediction time. As our combined
model already has a language model with a 12 layered transformer
network, adding more layers both to the structured branch as well as to
the concatenated combined model will make the model deeper thereby
further increasing latency.

The implementation was done in pytorch (Paszke et al., 2019).
BCEwithLogitsLoss was used as the loss function. Pytorch combines
BCELoss (Binary Cross Entropy Loss) and Sigmoid Layer into a sin-
gle class called BCEwithLogitsLoss (Binary Cross Entropy with Logits
Loss) (Stevens, Antiga, & Viehmann, 2020). BCEwithLogitsLoss has
been utilized in several recent publications (Hande, Puranik, Priyad-
harshini, Thavareesan, & Chakravarthi, 2021; Lewis, Mahmoodi, Zhou,
Coffee, & Sizikova, 2021; Melekhov et al., 2019).

During testing/inference sigmoid function is applied to the log-
its (outputs from the model) to convert them to probabilities. For
comparison, binary models are also trained and compared to their
multi-label counterparts following the same architecture but changing
the corresponding loss functions.

If a claim has an injury associated with it (i.e., the claim is BI-
positive), getting to know the severity of the injury associated with the
claim is very important. To achieve this, an injury severity model is
built. A BI-positive claim can have one of the four injury classes —
superficial, minor, moderate and complex/fatal, therefore the injury
severity problem is treated as a multi-class classification. The structured
data does not contain much signal about the severity of the injury.
However, the text data (claim notes) contains the details about the
loss incident and has signal about the severity of the incident and
corresponding injuries. So claims notes only are used to build the injury
severity model. It is observed in Table 1, only 10.74% of all claims
are BI-positive claims. For claims which are not BI-positive, there is no
notion of severity of injuries. Therefore, instead of building a severity
model using all claims data where the severity class labels would be
rare, a hierarchical approach was used. First, it is predicted if a claim
is BI-positive or not using the models described above, and then for
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claims that are predicted to be BI-positive, the multi-class BI-severity
model is used to predict the severity class for that claim.

As claims data changes with time, the same model architectures are
used to build models for day 1, day 5 and day 10 using the data which
is available till the day when model is trained.

5.2. Channeling approach

After getting predictions from the models based on different days
only a subset of claims are selected, which can be reviewed manually
by the adjusters. Each day new claims are opened and old claims are
updated. On any given day, the idea is to select claims across different
days and different classification problems. This ensures that importance
is given not only to new claims but also to old claims where updates
have been made for each problem type. With time, as more information
gets associated with the claim the models make better decisions. To
select a subset of claims, they are ranked. A claim score approach is
proposed in which the score of a claim is calculated based on model
predictions across days and domain specific heuristics.

claim score=𝑓 (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑙𝑎𝑏𝑒𝑙_𝑡𝑦𝑝𝑒, 𝑑𝑎𝑦, 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦)

1. Approach I — In this approach, for each claim the sum of the
probabilities of the four problem types is computed and then
they are sorted in decreasing order. For different days, a simple
average across all days is used.

2. Approach II — The problem with previous approach is that all
four problems have different distributions and taking a simple
average would have negative effects. To solve this, for each
problem type, the probabilities are changed to percentiles and
then the average of the percentiles is used.

3. Approach III — In Approach II, all the different problems and
different days models are treated equally. This is not true in
the real world, so domain specific weights are assigned to each
problem type. For e.g., fraud and attorney are assigned a higher
weight than total loss. Similarly, as data gets updated with time,
day 10 model makes predictions on more data as compared to
day 5 and day 1. So day 10 model is assigned with highest weight
followed by day 5 and then day 1.

4. Approach IV — The previous approach, considers all the bodily
injury claims equally but not all injury claims are of same
severity. So multi-class severity model predictions are used and
different weights are assigned to all injury claims based on their
severity probabilities. The severity weights are as follows — fatal
injuries are assigned the highest weight followed by moderate,
minor and superficial injuries.

Ideally, claims which have multiple positive labels should be re-
viewed manually. For e.g., a claim which has both attorney and bodily
injury associated with it should have a higher claim score than a claim
which has only attorney as the positive label. Further, a claim with fatal
bodily injury should have a higher score than minor bodily injury.

6. Results

In this section, the results for all the experiments are discussed. This
section is divided into two parts — modeling results and channeling
results. In the modeling results subsection, results for the different
machine learning modeling approaches are discussed. In the channeling
results subsection, the performance metrics of the different channeling
schemes proposed in this work are compared.

6.1. Modeling results

For all experiments six months worth of claims are used. The first
four months are used for training, the next half month is used for
validation and the last one and a half months are used as out of
time (OOT) test data. We used a total of 170K claims. Our training
set, validation set and OOT test set have 115K, 15K and 40K claims
respectively. All results presented are on the OOT test data.
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Table 4
Comparison of AUC scores of 2 layer dense neural network and XGBoost
model. XGBoost outperforms the neural network. The best results have
been highlighted.

Model Day 1

Macro Micro Weighted

2 layer dense network 0.858 0.919 0.893
XGBoost 0.881 0.924 0.907

6.1.1. Multi-label classification
Four different claims problems are considered — total loss, bodily

injury, attorney retention and fraud investigation detection, where each
classification problem has a label 1 or 0. For multi-label classification,
we present area under the receiving operating characteristic curve
(AUC) with three different aggregation methods: micro, macro and
weighted. Micro calculates AUC globally by considering each element
of the label indicator matrix as a label. Macro calculates AUC for each
label, and finds their unweighted mean without taking class imbalance
into consideration. Weighted calculates AUC for each label, and finds
their weighted average (Pedregosa et al., 2011).

For structured data, XGBoost and a 2-layer dense neural network are
trained and their performance is compared. Random search was used
for hyperparameter tuning (Bergstra & Bengio, 2012). For XGBoost,
the hyperparameters were number of estimators, maximum depth and
lambda (L2 regularization term) which were found to be 100, 6 and 1
respectively. The 2-layer neural network has the following parameters:
256 dense units in each layer, batch size 128, gradient descent with
learning rate 0.001 and momentum 0.9 and dropout of 0.2, which were
also tuned using random search. The results are presented in Table 4.
It is seen that the XGBoost model performs better than the 2-layer
network in all the above mentioned AUC aggregation methods. The
structured data remains the same for day 1, day 5 and day 10, therefore,
the results do not vary with time in this case.

For text data, TFIDF with logistic regression, LSTM, BiLSTM and
IBLM are used for our experiments. In the first method, text data is
vectorized using the TFIDF vectorizer and classification is performed
using logistic regression. Hyperparameter tuning is done jointly for
TFIDF and logistic regression using random search. The main hyper-
parameters were maximum number of features, document frequency,
n-gram range, maximum iterations and L2 regularization parameter.
The LSTM model consists of an embedding layer, followed by LSTM
layer, global average pooling, a dense layer, dropout and an output
layer with sigmoid activation. Adam optimizer with learning rate 0.001
and batch size of 128 is used. The BiLSTM model has the same structure
as the LSTM model but it has two stacked BiLSTM layers. For the
language model, IBLM is used and a linear layer is added with four
output neurons at the end corresponding to four labels. Learning rates
in the range 1e-2 to 2e-5, warmup steps, weight decay are some of
the hyperparameters used. The batch size was fixed to 32 and Adam
optimizer was used. The results of the different models trained on text
data only are presented in Table 5. As text changes with time, and more
information is appended after day 1, so we train models for day 5 and
10 also. It is seen that IBLM outperforms all the models followed by
LSTM, BiLSTM and TFIDF. These results support the fact that language
models give the best performance. It is observed that AUC are better at
a later date (day 10 is better than day 5 and day 5 is better than day
1) and this pattern is consistent across all the models. This implies that
using text from a later day is better for decision making as it is more
complete, relevant and up to date.

Further, structured and text data are combined and a combined
model is trained as shown in Fig. 3. Two different set of experiments are
performed. First, the text branch of the combined model is treated as a
fixed encoder by not training it. Second, the whole combined model is
trained end to end. This is done for different learning rates. The rest of

the hyperparameters are same as text only models for IBLM. The results
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Table 5
AUC scores for models trained on text data only in a multi-label classification approach. We observe that
IBLM performs better than other deep learning approaches across all the days. The best scores are highlighted.

Model Day 1 Day 5 Day 10

Macro Micro Weighted Macro Micro Weighted Macro Micro Weighted

TFIDF 0.849 0.856 0.838 0.907 0.913 0.903 0.932 0.941 0.903
LSTM 0.870 0.909 0.868 0.909 0.940 0.916 0.930 0.956 0.941
BiLSTM 0.847 0.894 0.851 0.888 0.931 0.907 0.915 0.951 0.936
IBLM 0.897 0.927 0.895 0.931 0.955 0.937 0.946 0.968 0.956
Table 6
AUC scores for different neural network configurations for multi-label combined model. When IBLM is treated as a fixed encoder and not trained further we see
higher scores for all the days. The best scores are highlighted.

Model IBLM trained Learning rate Day 1 Day 5 Day 10

Macro Micro Weighted Macro Micro Weighted Macro Micro Weighted

IBLM + 2 layer n/w No 1e−3 0.902 0.938 0.919 0.926 0.956 0.945 0.942 0.967 0.959
IBLM + 2 layer n/w Yes 1e−3 0.875 0.926 0.903 0.875 0.924 0.902 0.874 0.925 0.903
IBLM + 2 layer n/w No 2e−5 0.881 0.931 0.909 0.913 0.948 0.931 0.927 0.956 0.944
IBLM + 2 layer n/w Yes 2e−5 0.883 0.925 0.914 0.913 0.950 0.944 0.932 0.959 0.959
Table 7
AUC scores across different labels for the best multi-label models for structured only,
text only and combined (structured + text) data. For instance, combined model for
Total Loss performs best for all the days, but for BI and Attorney text models perform
better. However, for Fraud, on Day 1, combined model performs better but as claim
notes get updated, text only model performs better for later days.

Day 1

Model TL BI Attorney Fraud

Structured 0.932 0.878 0.879 0.836
Text 0.875 0.924 0.921 0.868
Combined 0.934 0.900 0.907 0.868

Day 5

Structured 0.932 0.878 0.879 0.836
Text 0.926 0.957 0.948 0.894
Combined 0.954 0.942 0.934 0.874

Day 10

Structured 0.932 0.878 0.879 0.836
Text 0.948 0.972 0.964 0.902
Combined 0.965 0.956 0.952 0.893

of the different combined model configurations are in Table 6. The best
results have been highlighted. It is observed that the best results are for
the configuration when the text branch is not further fine-tuned and is
treated as a fixed encoder. The learning rate used is 1e-3. which was
used for structured only experiments and gave the best results. Another
advantage of treating the text branch as a fixed encoder is that training
is also faster as the weights of the language model (IBLM) are not
further updated. Given structured data chosen is mostly static across
time, the trend of day 10 performing the best, then day 5 and then day
1 holds in the combined model as well.

By comparing the best models for structured, text and combined,
it is seen that combined model performs the best, followed by text
models and then structured models. However, it is insightful to view
how the multi-label combined model performs on the four individual
problem types: (total loss (TL), bodily injury (BI), attorney retention
(Attorney) and Fraud). Table 7 contains the AUC of the multi-label
combined model applied to each individual problem types for day 1,
day 5, and day 10. It is noted that the multi-label combined model
for total loss outperform the multi-label text models. However, for the
other labels especially attorney and BI, that is not the case. There are
two factors influencing this. First, the features for training total loss
structured model include detailed vehicle information including vehicle
damage indicators that describe if a certain part of the vehicle was
damaged or not. As a vehicle may be recommended for total loss when
there is a damage to multiple parts of it, these features are strongly
7

correlated to total loss indicator. This is not the case for the other
Table 8
Comparison of AUC scores between binary and multi-label models for each of the four
claims classification problems (TL, BI, Attorney and Fraud). For each input type, only
a single multi-label model is trained to predict all four claims classes, whereas four
distinct binary models (one for each claims type) are trained. It is observed that Fraud
has higher AUC score when trained in a multi-label way as compared to binary as it is
able to learn from other labels which is not possible in binary classification. The best
models for both binary and multi-label classification are highlighted.

Day 1

Classification Model TL BI Attorney Fraud

Binary Structured 0.927 0.877 0.873 0.812
Binary Text (LSTM) 0.852 0.898 0.890 0.807
Binary Text (IBLM) 0.874 0.922 0.916 0.852
Binary Combined 0.936 0.902 0.905 0.853

Multi-label Structured 0.932 0.878 0.879 0.836
Multi-label Text (IBLM) 0.875 0.924 0.921 0.868
Multi-label Combined 0.934 0.900 0.907 0.868

labels as the features for structured models are not as directly related
to the final label and majority of signal is embedded in the claim notes.
Hence adding structured features can have a subtractive influence on
the performance of the combined model especially for bodily injury and
attorney. Second, the text models improve greatly as more notes are
incorporated, especially for labels such as attorney and fraud that are
difficult to predict based on FNOL (or day 1) information, and as we
incorporate more recent details, performance of the models improve. As
the structured models are based on FNOL information, they are unable
to improve.

Fig. 4 contains the precision–recall curves for all days for each
problem type. The improvement is evident across days, however, im-
provement from day 5 to 10 is less as compared to day 5 from day 1.
This is because a large portion of the claim notes are entered within first
week so the amount of text data available for training and prediction
increases more from day 1 to day 5, than day 5 to day 10. The updates
are even less after day 10, so no models are built after day 10, instead
day 10 models are used for all days after 10. For fraud, day 1 tends
to not have enough information to determine whether a claim should
be investigated by the Special Investigation Units (SIU). However, by
day 5, a large percentage of suspicious claims will have been flagged
leaving a smaller number to be flagged, so the performance of day 5
and day 10 models are similar in that regard.

6.1.2. Multi-label vs Binary label classification
In this section, instead of a single multi-label classifier, four dif-

ferent binary classification models are trained. Table 8 presents this
comparison for day 1 only. We limit the comparison to day 1 only as we

are interested in knowing which modeling technique (single multi-label
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Fig. 4. Precision–recall curves for multi-label models when trained using combined data across days for each problem type. As the claims get updated with more recent notes
over time, the performance of the models improve.
classifier or four different binary classifiers) is better at predicting the
insurance classification tasks and assigning the claims to the adjuster
on day 1 itself (early in the life cycle of the claim). We could follow the
same process with day 5 and day 10 models but in that case we would
need to wait for five and ten days respectively to get model predictions
and assign the claim to the claim adjuster which could cause delays in
claim processing.

For the binary classifiers, the model architecture is the same except
for changes in loss function and number of neurons in the output
layer. In terms of AUC, it is observed that total loss and bodily injury
combined binary models do better than their multi-label counterpart.
For attorney and fraud it is opposite. The decrease in fraud when
trained in a binary classification way, is higher as compared to all the
three different problems. This indicates that when trained in a multi-
label way the fraud labels take advantage of other labels as well leading
to a higher AUC.

Fig. 5 contains precision–recall curves for multi-label and binary
classification models for each problem type for day 1. The values
are similar to each other but improvement is observed in fraud. This
supports the fact that fraud labels indeed take advantage of data from
other problem types when trained in a multi-label way which is not
possible when trained in a binary fashion. Also, just by using one multi-
label model similar results are obtained and they are better in case
of fraud than four different binary classification models. Similar trend
is expected for day 5 and day 10 also, as with more data available
the multi-label approach would benefit even more than the binary
approach.

6.1.3. Multi-class BI severity classification
The structured data does not contain much signal with regard to

the bodily injury and their corresponding severity. The majority of
the injury related details are present in the claim notes. Recall in
Table 7, it is observed that text-only model outperformed structured
and combined models for bodily injury (BI) claims. Due to these
reasons severity models are built using text data only. Similar to
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the aforementioned text-based models, TFIDF with Logistic regression,
LSTM, BiLSTM and IBLM is used for our experiments. In addition, a
1-dimensional convolutional neural networks (CNN) is also built as
they often outperform LSTMs on smaller datasets. It is also noted
that the dataset for BI severity classification is a subset of the dataset
used for previous experiments as BI-positive claims are 10.74% of all
claims, and therefore it is much smaller in size. For TFIDF with logistic
regression, joint hyperparameter search is performed to get the optimal
set of hyperparameters. The 1-D CNN model consists of an embedding
layer, followed by two sets of successive 1-D CNN layer and 1-D max
pooling layer, a flatten layer (for flattening the input), a dense layer
and an output layer with softmax activation. The LSTM, BiLSTM and
IBLM models are similar to the models used in text-based models for
binary classification other than changing the activation from sigmoid
to softmax.

Table 9 describes the results of the multi-class BI severity experi-
ments. It is observed that IBLM outperforms the other methods for day
1, and logistic regression using TFIDF performs second-best. However,
for day 5 and day 10, the logistic regression using TFIDF outperform
the other models including IBLM models. The reason for this could be
that severity classification is strongly linked to certain words used in
the claims — claims that have severity as superficial would have very
different words used than ones used in complex/fatal claims. Also, as
more claim notes are added after the first day, it is likely that the newly
added words further differentiate the severity of the claim as the claims
adjuster is closer to ascertaining the true severity of the claim. Further
as the dataset is significantly smaller, it is unsurprising that a simpler
method such as logistic regression would outperform more complex
deep learning methods. It is noteworthy that even on a smaller dataset,
IBLM models are able to outperform other deep learning models across
all days which proves the overall efficacy of domain-specific language
models.

6.2. Channeling results

In this subsection, the results of different approaches discussed in

Section 5.2 are presented. The aim is to route claims that have multiple
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Fig. 5. Comparison of Precision–Recall values for Combined model for Day 1 only when trained in multi-label method versus binary-label method. The performance is similar for
Total Loss, Bodily Injury and Attorney classification. However, for Fraud, the multi-label approach has a better performance as it is able to jointly learn from other labels which
is not possible in binary classification.
Table 9
Comparison of AUC scores for different approaches for BI Severity (using only text
data). On Day 1, IBLM performs the best whereas, for Days 5 and 10, TFIDF outperform
other models. The best scores are highlighted.

Model Day 1 auc Day 5 auc Day 10 auc

Macro wt Macro wt Macro wt

TFIDF 0.658 0.613 0.708 0.652 0.717 0.658
CNN 0.628 0.584 0.658 0.609 0.645 0.601
LSTM 0.529 0.516 0.510 0.527 0.528 0.513
BiLSTM 0.545 0.531 0.536 0.531 0.525 0.521
IBLM 0.684 0.634 0.682 0.633 0.674 0.623

positive labels to domain experts as they are more important than single
positive label claims. Let 𝐒𝑖 define the set of all claims with 𝑖-positive
labels and 𝐒𝑗𝑖 represents an event in which 𝑗 claims with 𝑖-positive labels
has been routed to domain experts. Then the probability of such event,
denoted as 𝐏𝐫(𝐒𝑗𝑖 ) and referred to as recall, is given by E[𝐈𝐒𝑗𝑖

] where E is
the expectation and 𝐈𝑆𝑗

𝑖
is an indicator function, which is one if event 𝑆𝑗

𝑖
occurs and zero otherwise. Note that 𝑗 is a function of volume threshold
based on domain expert capacity. Ideally, at a certain volume threshold,
a high recall for claims with multiple positive labels (𝑖 ∈ {2, 3, 4}) and
a low recall for claims with single and no positive labels (𝑖 ∈ {1, 0}) are
desired.

Table 10 contains the results for different approaches used to calcu-
late claim score. Based on claim score, top 10% of claims only (volume
threshold) dependent on capacity of domain experts is selected. Predic-
tions for combined models day 1, day 5 and day 10, together are used
to calculate the claim score.

Each column in the table represents the recall for number of positive
labels. 𝑟𝑒𝑐𝑎𝑙𝑙0 column presents recall of claims with no positive labels,
𝑟𝑒𝑐𝑎𝑙𝑙1 presents recall of claims with one positive labels and so on. It
is desired to have lower values for 𝑟𝑒𝑐𝑎𝑙𝑙0 and 𝑟𝑒𝑐𝑎𝑙𝑙1 as they are less
important and higher values for 𝑟𝑒𝑐𝑎𝑙𝑙2, 𝑟𝑒𝑐𝑎𝑙𝑙3 and 𝑟𝑒𝑐𝑎𝑙𝑙4 for a particu-
lar volume threshold. It is observed that Approach IV which takes into
9

Table 10
Recall metrics for different channeling approaches for all predictions till day 10 at 10%
volume threshold. Approach IV outperforms all other approaches for claims which have
multiple positive labels (𝑟𝑒𝑐𝑎𝑙𝑙2, 𝑟𝑒𝑐𝑎𝑙𝑙3 and 𝑟𝑒𝑐𝑎𝑙𝑙4) which is desired. The best scores
are highlighted.

𝑟𝑒𝑐𝑎𝑙𝑙0 𝑟𝑒𝑐𝑎𝑙𝑙1 𝑟𝑒𝑐𝑎𝑙𝑙2 𝑟𝑒𝑐𝑎𝑙𝑙3 𝑟𝑒𝑐𝑎𝑙𝑙4
Approach I 0.004 0.219 0.584 0.756 0.730
Approach II 0.010 0.202 0.567 0.775 0.730
Approach III 0.013 0.189 0.592 0.710 0.800
Approach IV 0.009 0.179 0.663 0.783 0.870

Table 11
Recall metrics for channeling approaches for all predictions of Day 1 only at 10%
volume threshold. Approach IV performs best for claims that have 2 or 3 positive
labels but not for all positive labels (4). On Day 1, the claims data is not complete and
hence a drop in performance. As claims get updated with time Approach IV performs
best as shown in Table 10. The best scores are highlighted.

𝑟𝑒𝑐𝑎𝑙𝑙0 𝑟𝑒𝑐𝑎𝑙𝑙1 𝑟𝑒𝑐𝑎𝑙𝑙2 𝑟𝑒𝑐𝑎𝑙𝑙3 𝑟𝑒𝑐𝑎𝑙𝑙4
Approach I 0.013 0.227 0.488 0.680 0.600
Approach II 0.018 0.219 0.450 0.670 0.530
Approach III 0.026 0.194 0.470 0.610 0.400
Approach IV 0.020 0.185 0.543 0.688 0.530

consideration day weights, label weights, severity information based
on ranking of predictions gives best results. Recall for multiple positive
labels (𝑟𝑒𝑐𝑎𝑙𝑙2, 𝑟𝑒𝑐𝑎𝑙𝑙3 and 𝑟𝑒𝑐𝑎𝑙𝑙4) are highest for Approach IV, whereas
𝑟𝑒𝑐𝑎𝑙𝑙0 and 𝑟𝑒𝑐𝑎𝑙𝑙1 are on the lower side. This ensures that the claims
routed to domain experts for manual review would contain multiple
positive labels and are deemed to be important.

It is observed based on the results of the previous subsection that
day 10 model performs best as the claim notes are more complete
compared to day 1 or day 5. However, it is important to understand and
contrast the performance of different channeling approaches on the day
the claim is opened compared to the results of the model incorporating

data from all the days (Table 10). For this, day 1 combined model is
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Fig. 6. Cumulative histograms for sequence length of claims with positive Total Loss, BI, Attorney, Fraud labels and no positive labels for day 1, 5 and 10 respectively. The red
dashed line at 512 represents the maximum sequence length of the language model. Claims with no positive labels are shorter in length than claims with positive labels. Positive
Fraud claims are shorter in length than other positive labeled claims.
used. It was noted earlier that day 1 performance is lower than day 10
as day 1 notes are not complete. Table 11 depicts the recall metrics
for 10% volume threshold for day 1 combined model. As expected,
the recall metrics are lower than Table 10. For 𝑟𝑒𝑐𝑎𝑙𝑙2 and 𝑟𝑒𝑐𝑎𝑙𝑙3,
Approach IV performs the best. However, for 𝑟𝑒𝑐𝑎𝑙𝑙4, Approach IV does
not performs the best. This is because claims needs to be updated with
more information. Tables 10 and 11 gives a range of recall values to
expect from different models based on claim age.

7. Discussion

7.1. Length analysis of claims notes

Figs. 6(a)–6(c) show the cumulative histogram plots of the sequence
lengths of the claims on day 1, 5 and 10 respectively for all the claims
belonging to one of the four classes as well as claims with no positive
labels. Only up to the 99th percentile is considered to avoid large
anomalies in the last percentile as observed in Table 2.

It is observed that there is no observable difference for the cumula-
tive histograms across the different labels for day 1. However, it is also
observed that more than 80% of claims with no labels have sequence
lengths less than 512 for days 5 and 10 while claims with positive
labels have a much smaller percentage of claims shorter than 512.
This demonstrates that there is a distinct difference between claims
with positive labels as compared to claims with no labels, and this is
essentially because more notes are added on average in claims with
positive labels compared to claims with no labels.

Moreover, among the different claim types with positive labels it is
observed that claims which have a positive label for fraud have more
than 40% of the claims with sequence lengths shorter than 512 as
compared while the other positive classes have a much smaller % of
claims shorter than 512. This is because fraud claims are often less
detailed than other positive claims.

7.2. Volume thresholds

All the claims cannot be reviewed manually and only a small volume
of claims can be routed to adjusters for manual review. Historically,
these volumes have been 10% for total loss, 8% for BI and attorney and
2% for fraud. To get an idea of how well the models perform in terms
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of precision and recall the volume thresholds are set around historical
averages. Fig. 7 contains the precision and recall values for different
volume thresholds for each problem type. The model used here is
day 10 combined model. The general trend is, as volume threshold
is increased the precision drops and recall increases. It is desired to
have a high recall (do not want to miss on positive labeled claims) but
have to limit to a small volume. For total loss, the volume thresholds
are 8%, 10% and 12%. In general, the precision is high for total loss
for all volume thresholds and recall increases with increase in volume.
For BI and attorney, volume rates are 6%, 8% and 10%, for fraud,
volume rates are 1%, 2% and 4%. For total loss, high precision but
low recall is obtained as there are a large amount of total loss claims
and we limit the volume threshold around 10% only. The same is true
for bodily injury claims as well. However, for attorney and fraud, the
precision is on the lower side and recall values are higher. These two
classification problems take longer to process as they require additional
details like law court details and police reports, both of these are not a
part of claim notes. For attorney, only 31% of claims had the final label
assigned within 10 days, the corresponding number for bodily injury is
61.8%. Fraud labels also take a long time to get assigned because of
investigation details. This makes attorney and fraud difficult to predict
within first 10 days than total loss and bodily injury claims, leading to
lower precision and recall values.

8. Web based user interface

A web application is built as a front end to the proposed channel-
ing system. The application enables end users (claims adjusters, SIU
investigators) to retrieve the claims that meet the claim score thresholds
based on the channeling mechanism. In addition, the application gives
flexibility to the end user to write in the experience of the customer
from claim notes and look at the predictions in real time. Further,
some of the structured data comes from third party data sources and
can take time to get updated. As the text specific model results and
combined model results are similar in Table 7, both text only and
combined models are deployed in the web application. The two modes
are described in more detail as follows-

1. Batch — In this mode, all the new and updated claims get scored
by the combined model (as both text and structured data are
available) on a daily basis. Then the channeling mechanism
would generate the claim score for each claim and route the
claims above a certain threshold to the appropriate adjusters for
manual review.
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Fig. 7. Precision and Recall values for different volume thresholds around historical averages based on domain experts availability for each claims classification type for day 10
combined model. As volume thresholds increase, the precision decreases and recall increases.
Table 12
Macro AUC scores for different models across days.

Macro auc Day 1 model Day 5 model Day 10 model

Day 1 data 0.902 0.871 0.869
Day 5 data 0.911 0.926 0.926
Day 10 data 0.912 0.938 0.942

2. Interactive — In this mode, the adjusters can just provide the
claim notes and see the predictions. Further, the claim score is
also calculated and based on the score the adjuster can know
whether this claim would have been above the threshold or not.
This feature is really helpful as sometimes multiple text updates
are made in the same day so the adjuster can have access to
results in real time and not wait for next day to get the results
from batch mode.

It is important to route distinct types of claims to corresponding
adjusters with specific expertise. In order to achieve this, the contri-
bution of each classification problem in claim score is calculated and
the claim is routed to the adjuster who has expertise corresponding to
the problem with maximum contribution. However, due to multi-label
nature of the claim, more than one classification problems might have
significant contribution in calculating the claim score. In such cases,
the claim is routed to different adjusters having relevant expertise. The
adjusters can then keep in sync, share details and insights related to
the claim with each other and service the claim quickly.

Considering models are built for day 1, 5 and 10 only, a good
question is which model should we use on day 2, 3, 7, 8, etc. Building
a different model for each day is not feasible, so only the above three
models are used. To choose which day model to choose for intermediate
days (2–5), (6–9) and (>10) the data from different days is scored using
the three models. The macro AUC metrics is shown in Table 12. It is
evident from Table 12 that day 1 model performs best on day 1 data,
day 5 model on day 5 data and day 10 model on day 10 data. However,
the question here is — which model should be chosen? day 1 or day 5
model for day 3? The trend in the tables is as follows — for a particular
model we can move ahead in terms of days but not backwards. The
upper triangular table is worse than lower triangular table. Day 1 model
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can be used for day 5, 10 but not vice-versa. Day 10 model cannot be
used on day 1. Therefore, for the intermediate days 2–5 we propose to
use day 1 model, day 6–9 use day 5 model and day 10 models for days
after 10. Using this approach, claims on all days can be scored by using
just three models and getting minimum performance drop.

9. Conclusion

In this work, text and structured data is combined together to train
multi-label models for four different claims classification problems.
IBLM that is trained with insurance specific corpus with enhanced
vocabulary is utilized. As claims data changes with time, distinct mod-
els for different days are built. It is observed that combined multi-
input model, text and structured data combined, performs better than
structured-only and text-only models for majority of the classification
tasks. When compared with their binary counterpart, the multi-label
models perform equally well and outperforms in case of fraud. Further,
to ascertain the level of severity for bodily injury claims, a multi-class
classification model is developed. A channeling approach is proposed in
which the predictions from the models for different days are combined
to generate a claim score using domain specific heuristics to weigh
different labels and day information. Severity of injury information is
also included when calculating the claim score. It is observed that a
high recall for claims which have more than one positive label associ-
ated with them is obtained. Further, a web application is built which
combines the overall approach of making predictions using combined
models, calculating the claim score and routing the claims to domain
experts based on volume thresholds.
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