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Abstract — Organic Photovoltaic (OPV) Solar Cells

are a rapidly developing technology with promising

capabilities over leading renewable energy sources.

Screening methods for determining promising donor

and acceptor molecules to augment the efficiencies of

such cells can be substantially accelerated through deep

learning. Textual descriptors, specifically Simplified

Molecular Input Line Entry System (SMILES), are uti-

lized as network inputs, while quantum-chemical calcu-

lations based on density function theory (DFT) provide

chemically-accurate targets for training and testing. We

present a Long Short-Term Memory (LSTM) based net-

work which uses a self-attention mechanism and a ro-

bust data augmentation routine to predict several OPV

optoelectronic properties (e.g. highest occupied molec-

ular orbital and lowest unoccupied molecular orbital).
The LSTM cells, coupled with self-attention, learn

the successive ordering and pairing of SMILES char-

acters while attending to certain salient constituents

of the molecule, which produce a robust understand-

ing of the molecular graph. The Harvard Clean En-

ergy Project (CEP) and National Renewable Energy

Laboratory (NREL) OPV datasets are used for this

study. The CEP dataset portion which we use contains
∼1.2E6 candidate donor molecules with their respective

DFT-computed properties, whereas the NREL OPV

dataset possesses ∼9.1E4 samples. Compared to con-

temporary graph-based model selections, our network

reduces the MAE over all considered optoelectronic

properties on the CEP and NREL OPV datasets by

an average of 21.23% and 10.06% respectively. Further-

more, we demonstrate that our model generalizes well

to the pharmaceutical drug discovery focused ZINC-

250k dataset, reducing the MAE across all properties

by an average of 28.2% from the current state-of-the-art

model.

Keywords Machine Learning · Organic Photo-

voltaics · Recurrent Neural Network · High Throughput

Virtual Screening · Attention · Drug Discovery

1 Introduction

The global warming crisis has induced a heavy de-

mand on clean alternative energy sources, namely solar

cells, whose technological development and manufac-

turing efficiency has been immensely improved over the

past few decades. Although inorganic cells (e.g. con-

ventional silicon-based) possess superior performance in

terms of power conversion efficiency (PCE), they suf-

fer from complicated, expensive fabrication processes

and structural rigidity [1]. Organic Photovolatic (OPV)

cells, based on thin film polymers or small molecules, of-

fer simple and cost-efficient fabrication processes, novel

applications, but lack a high enough PCE for commer-

cialization [1].

Contemporary methods for locating new candidate

compounds for OPV cells, which involve synthesis and

evaluation, are exhaustive and laborious, and remain a

heavy bottleneck in the screening process [2] [3]. OPV

cell design seeks to maximize the PCE, or the percent-

age of electricity which is generated from absorption

of photons. The PCE depends on specific optoelec-

tronic properties of donor and accpetor molecules in

the cell, namely the highest occupied molecular orbital

(HOMO) energy of the donor and the lowest unoccu-

pied molecular orbital (LUMO) energy of the acceptor

[4]. The ability to rapidly and accurately predict these

important properties and hence avoid a costly and time-
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intensive screening process has been the objective of

high throughput computational material design efforts.

OPV materials discovery has been substantially ac-

celerated through High Throughput Virtual Screening

(HTVS), whereby large quantities of thermodynamic or

optoelectronic properties are generated through simu-

lations or experiments and subsequently used for ma-

terials discovery, specifically targeting desirable prop-

erties [5, 6]. The most prevalent and accurate simula-

tion methodology is density functional theory (DFT),

a computational quantum mechanics modeling routine

which determines molecular properties using function-

als of the electron density [7]. DFT possesses chemically

accurate computations but is severely bottlenecked by

its processing time, especially when coupled with the

demanding requirements of HTVS [8].

Machine Learning (ML), a field of statistical learn-

ing, has directed materials research into a new data-

driven science paradigm [5, 9]. ML has the potential to

match the chemical accuracy of DFT while significantly

decreasing the processing (inference) time [10–12]; ML

algorithm prediction times (operating at O(10−3s)) are

nearly six orders of magnitude faster than DFT calcu-

lations (O(103s) on 30 heavy atom molecules) [8].

Demonstrating initial success in pharmaceutical

chemistry, ML models have been leveraged to predict

more challenging properties such as chemical reactiv-

ity, melting point, solubility, and electronic properties

[13, 14]. Several descriptors have been utilized in ML

frameworks for electronic properties prediction [5], in-

cluding Coulomb matrices [15, 16], molecular strings or

graphs [8, 17–19], and molecular fingerprinting [13, 20].

Among these approaches are natural language pro-

cessing (NLP) derived techniques which depend on tex-

tual representations [21, 22] of molecular structures

rather than relying on 2D or 3D-defined structures (i.e.

spatial coordinates) [3, 20, 23]. Novel components used

extensively in NLP, such as attention mechanisms [24],

have shown great promise in the analysis of molecular

structures [25–27]. Line notations also permit the us-

age of augmentation techniques that are easily realized

and computationally efficient [26, 28], which greatly

improve network performance especially when coupled

with attention-mechanisms. Furthermore, NLP tech-

niques allow for deeper analysis of the molecular struc-

ture. Multi-dimensional embeddings enable practition-

ers to generate reduced-space clusters of molecular to-

kens (predetermined individual or grouped SMILES

characters) to understand the learned relationships be-

tween certain molecular components [26]. Attention en-

hances these analytical capabilities by narrowing down

specific components of a molecule which most heavily

resonate with target properties [26], enabling practi-

tioners to create activation maps of complex molecules.

A richer understanding of the encoded structure is

especially useful in the automated creation of new

molecules, whereby generative networks are required to

learn the textual descriptor syntax and the respective

semantics [29, 30].

In this work, we create an attention-driven LSTM

network with 1D convolutions to predict optoelectronic

properties of OPV candidate molecules from the Har-

vard Clean Energy Project (CEP) [31] and NREL OPV

[8] datasets. Such properties include the HOMO and

LUMO energies. We enhance our network training by

employing a robust data augmentation scheme, which

is also exploited during testing. We demonstrate that

textual representations are effective descriptors which

achieve better results than graph-based models for the

considered OPV datasets.

Furthermore, although the intent of this study is

to accelerate HTVS for organic solar cells, we also

demonstrate the efficacy of our ML framework in the

field of drug discovery. Analogous to the challenges in

the OPV field, pharmaceutical research involves HTVS

of organic molecules to identify suitable drug candi-

date compounds [32] [33]. We use the the ZINC-250k

dataset, which contains 250k drug-like molecules ex-

tracted from the ZINC database [34], to predict the

log octanol-water partition coefficient (logP) and the

quantitative estimate of drug-likeness (QED) [35]. We

show that our attention-LSTM model provides better

results than leading state-of-the-art variational autoen-

coder (VAE) based models [36].

2 Related Works

Machine learning models have been successfully applied

in materials and molecular design [11, 12, 37–43] by

utilizing datasets created by experimental observations

and theoretical simulations.

Among these ML works, Decision Tree-based meth-

ods such as Random Forests and Extremely Random-

ized Trees [44] were developed for screening organic

monomers used for photovoltaic applications and pre-

dicting organic solar cell efficiency [45, 46].

Jorgensen et al. [47] used a VAE with prede-

fined SMILES syntax (grammatical) rules for predict-

ing molecular properties and generating new molecules

with desirable properties. The All SMILES VAE [36]

significantly improved the results from [47] by intro-

ducing a more efficient message passing system, which

encodes multiple SMILES strings of the same molecule

with stacked recurrent networks, pooling SMILES rep-

resentations between the multiple inputs, and using at-



Title Suppressed Due to Excessive Length 3

tentional pooling to construct the final latent repre-

sentation; the decoder is then capable of mapping this

latent space into a disconnected set of SMILES strings.

The All SMILES VAE is capable of efficiently exploring

the chemical space, searching for molecules with desir-

able properties, and can also be leveraged for property

prediction (used on the ZINC-250k and Tox21 datasets)

[36].

Paul et al. [3] explored the use of multiple line nota-

tions (SMILES and InChI) as inputs for a convolution-

LSTM network (SINet). SINet aimed to learn unique

representations of molecules captured in syntactically

different encodings to predict the HOMO energies of the

Harvard CEP dataset, while employing transfer learn-

ing to predict the HOMO energies of the HOPV-15

dataset [48].

3 Modeling and Assumptions

The common equation quantifying the PCE (η) of a

solar cell is provided in 1; given an open-circuit voltage

(Voc), short-circuit current density (Jsc), electrical fill

factor (FF ), and incident light intensity (Pin).

η =
VocJscFF

Pin
(1)

The Scharber model [49] was used to focus on salient

optoelectronic properties that most heavily influence η.

We make the same initial assumptions as Scharber et al

[49] regarding FF and Jsc. Assuming a practical PCE,

the external quantum efficiency (EQE) and FF is set to

65%. The induced Jsc then reduces to an EQE-scaled

maximal photo-generated current Jph associated with

the Air Mass 1.5 (AM1.5) spectrum, given in 2; where

J̃sc,Sch is the Scharber-assumed short-circuit current

density and φph(E) is the solar photon flux density.

Following these assumptions, the FF and Jsc reduce to

constants which render them negligible for this study.

J̃sc,Sch = 0.65Jph = 0.65q

∫ ∞
Eg

φph(E)dE (2)

The remaining component of η to optimize is Voc,

which has been previously identified as a major defi-

ciency for commercialization of bulk-heterojunction so-

lar cells [50]. This limiting factor was investigated [49]

by empirically deriving a relationship between Voc and

the HOMO energy level of the donor polymer, using

[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as

a fixed acceptor. It was deduced that Voc is approx-

imated by the equation given in 3, which ultimately

suggests that the predominate factor in attaining a

higher Voc is maximizing the difference between the

donor HOMO and acceptor LUMO. Fixing the accep-

tor LUMO suggests that the donor HOMO is the more

important component of the equation.

Voc = (1/e)(|EDonorHOMO| − |EPCBMLUMO |)− 0.3V (3)

However, the PCE is more sensitive to changes in

donor LUMO energy rather than strictly its bandgap

[49]. For example, a variation of the donor bandgap by

0.65 eV induces a PCE change of 1%, whereas a varia-

tion of 0.65 eV of the donor LUMO energy induces PCE

changes between 3.5% and 8% (depending on the donor

bandgap) [49]. Therefore, it is imperative to optimize

the donor LUMO energy when designing solar cells with

target efficiencies exceeding 10%. In this work, we aim

to construct regression models which accurately predict

these essential energies which primarily govern the PCE

of an OPV cell.

4 Methodology

4.1 Datasets

Two primary datasets were used in this study: the Na-

tional Renewable Energy Laboratory (NREL) OPV [8]

and the Harvard Clean Energy Project (CEP) [31] [13].

Developed in 2019, the NREL OPV dataset con-

tains 9.1E4 molecules with DFT-computed optoelec-

tronic calculations specifically for OPV applications.

NREL populated the dataset with relatively larger

molecules (≤ 201 atoms) when compared to other sim-
ilar datasets such as QM9 (≤ 29 atoms). The NREL

OPV dataset hence stands as a more representative

benchmark for electronic structure predictions. NREL

utilized the B3LYP/6-31g(d) DFT functional/basis-set

combination. The specific optoelectronic properties in-

cluded in the dataset are: HOMO and LUMO en-

ergy levels of the monomer, first excitation energy of

the monomer (Gap), and spectral overlap (optical ab-

sorption spectrum overlap area between a dimer and

AM1.5). Additionally, properties extrapolated to the

polymer limit were generated: polymer HOMO and

LUMO, polymer Gap and polymer optical LUMO (sum

of polymer HOMO and polymer Gap).

The Harvard CEP, created in 2011, featured an au-

tomated in silico, high-throughput system for screening

millions of OPV candidates at first-principles electronic

structure level [31]. The CEP sought to advance be-

yond a sophisticated screening method by also develop-

ing a systematic understanding of structure-property

relationships, which aids in engineering novel organic
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electronics [31]. The dataset portion employed in this

work contains ∼1.2E6 candidate donor molecules. The

optoelectronic properties of which were computed us-

ing the BP86/def2-SVP DFT fucntional/basis-set com-

bination; we focus on HOMO, LUMO and Gap for this

study.

Finally, we further validate our model and demon-

strate its versatility by predicting molecular proper-

ties on the ZINC-250k dataset [34]. ZINC-250k con-

tains 2.5E5 drug-like commercially available organic

molecules with ≤ 38 heavy atoms. In accordance with

related works [36, 51], we focus on predicting the log

octanol-water partition coefficient (logP) and quantita-

tive estimate of drug-likeness (QED) [35].

4.2 Pre-processing and SMILES Encoding

All molecules in the considered datasets are given

in Simplified Molecular Input Line Entry System

(SMILES) [52] format. SMILES provides a textual rep-

resentation of molecules that compresses the atomic

connectivity and topological information into a sin-

gle ASCII string. For example, 2-ethyl-1-butanol is en-

coded as “CCC(CC)CO”. SMILES does not explicitly

define protonation of molecules as it can be inferred

through predetermined rules.

We consider each SMILES character to be a

uniquely trainable component or “token” of each

molecule, which is learned through an embedding layer

[53]. A dictionary was created from each dataset that

maps a set of tokens to an initial set of continuous val-

ues of shape Lmax × 1 where Lmax is the maximum

SMILES length across the entire dataset. The dictio-

nary was used to convert all SMILES strings to their

equivalent continuous vectors, xi, shown in Figure 1

(a)–(b).

A character embedding layer [53] was used to learn

a mapping between the initial continuous SMILES vec-

tors, Figure 1 (b), to a 32-dimensional vector space,

shown in Figure 1 (c); more information is provided on

this specific implementation in 4.4. Word and charac-

ter embeddings have been used extensively for Natural

Language Processing (NLP) tasks and have shown sig-

nificant improvements over sparse encoding techniques

(namely one-hot encoding). These embedding vectors

represent projections of the original SMILES charac-

ters and are responsible for capturing the semantics of

tokens and their relation in the SMILES string [26].

The regression problem is then reduced to minimiz-

ing the loss of the network output f(xi) given a set

of SMILES vectors and their respective ground truth

targets yi by tuning a parameter set θ, shown in 4.

argmin
θ

∑
i

L(f(xi : θ),yi) (4)

4.3 Augmentation Methods

Data augmentation techniques were used to better train

the network on the NREL dataset. Bjerrum [28] first

introduced that randomly changing the atomic order of

a molecule can yield different SMILES representations

for the same molecule, which can be used to generate

more input-target pairs when training a neural network.

For example, whereas the canonical form of 2-ethyl-1-

butanol is CCC(CC)CO, we observe five non-canonical

forms which can be used for the same original target:

C(CC)(CO)CC

C(C(CC)CO)C

C(C)C(CC)CO

C(O)C(CC)CC

C(CO)(CC)CC

Bjerrum demonstrated that using this augmenta-

tion technique yielded better results for an LSTM-based

network; and has since been used in contemporary de-

signs [26]. We designate the augmented samples as x̂i.

Conformational isomers, molecules with identical

connectivity but different atomic positioning, have

slightly different optoelectronic properties when com-

puted by DFT - discussed more in 5.2. Although our

proposed network utilizes a textual descriptor, this un-
certainty is captured by creating noisy targets (ŷi).

Zero-mean Gaussian noise (N ) is added to each aug-

mented training sample’s target; a mathematical for-

mulation is provided in 5. Hence, the new input-target

pairs are given as (x̂i, ŷi)

ŷi = yi +N (µ, σ2) (5)

Adding noise to the augmented samples targets al-

lows the model to generalize better, and is also lever-

aged during testing. The standard deviation of the

Gaussian window was dependent on the acceptable er-

ror range provided by the DFT-deduced values for each

property (given in Table 1, “Conf” column). Finally,

the targets were scaled to have zero median and unit

inner quartile range [8]. Hence, the regression problem

is simplified to equation 6, where the loss is minimized

between the network outputs given the augmented sam-

ples (f(x̂i)) and the noisy targets (ŷi).



Title Suppressed Due to Excessive Length 5

argmin
θ

∑
i

L(f(x̂i : θ), ŷi) (6)

This augmentation technique is also exploited for

network evaluation, a method of testing that has gained

traction in the imaging community [54] referred to as

Test-Time Augmentation (TTA). TTA involves execut-

ing model inference on augmented test samples; the out-

puts of which are averaged and used as the final predic-

tions. We deduce that since the network is trained to

recognize multiple SMILES permutations, the evalua-

tion results will improve with such augmented SMILES.

All results provided from our models for the NREL

OPV dataset are the TTA outputs.

4.4 BiLSTM and the Self-Attention mechanism

As discussed in Section 4.2, a character embedding layer

is used to understand the semantics of the molecule

in terms of its constituent characters, or tokens. A

molecule given by n tokens is represented by an em-

bedding matrix E, given in 7. Each vector τi is a

32-dimensional token embedding for the ith token in

the molecule. The full embedding matrix E has shape:

Lmax × 32.

E = (τ0, τ1, ..., τn−1) (7)

We utilize an LSTM layer [24] to introduce a depen-

dence between neighbor tokens; and since the encoded

SMILES has no inherent direction or time-dependence,

we apply the LSTM cells bidirectionally [55] to fully

capture contextual details. Bidirectional LSTM (BiL-

STM) based models involving character embeddings

have demonstrated superb performance in works involv-

ing SMILES analysis [56] [26] [25].

For each time-step t, provided a past hidden state−→
h t−1, or future state

−→
h t+1, the LSTM outputs are

given as:

−→
h t =

−−−−→
LSTM(τi,

−→
h t−1) (8)

←−
h t =

←−−−−
LSTM(τi,

←−
h t+1) (9)

We then concatenate (σ) these hidden states for

each time-step. Hence the final output (hi) of the BiL-

STM for each ith token of E is given in 10. This is

further consolidated into a matrix yi across all tokens

of a given molecule.

hi = σ(
−→
h t;
←−
h t) (10)

yi = (h0, h1, ..., hn−1) (11)

Network performance is enhanced by appending an

Attention layer to the BiLSTM. The Attention mech-

anism has several variants and have been used exten-

sively in machine learning models; primarily for NLP

applications like neural machine translation (NMT) to

resolve the short-term memory bottleneck of Recur-

rent Neural Networks (RNNs), which employ LSTM or

GRU cells. Cho et al [57] showed that the performance

of encoder-decoder networks for NMT suffered as the

input vectors increased in size; LSTM-based networks

would discard learned representations of early words

in the sentence and utilize the last state for transla-

tion. Bahdanau et al [58] created the initial attention

mechanism which learns to appropriately weigh all in-

put states in the sentence rather than being limited

to its last state. During the decoding phase, the net-

work essentially “attends” to different contextual pat-

terns across the entire input, hence it can make more

informed predictions. Cheng et al [24] expanded this

idea and created the self-attention (or intra-attention)

mechanism which relates different positions of a single

sequence to learn lexical relations between tokens [59].

Similarly, in the analysis of lengthy SMILES vec-

tors, critical relations between tokens are highly suscep-

tible to being neglected by a simple LSTM/GRU layer.

We utilize a self-attention mechanism to exploit all

interconnected relationships between tokens [26] [25],

enabling the network to more heavily concentrate on

salient constituents of the entire molecule which pos-

sess a heavier influence on the target value.

The intermediate self-attention matrix (ei) is pro-

vided in 12, provided the concatenated LSTM output

(yi) for a given molecule. We employ multiplicative self-

attention which introduces new weight and bias terms

(Wa and ba) and uses ReLU activation (ζ).

ei = ζ(yTi Wayi + ba) (12)

The softmax function is applied to ei to generate

the final attention matrix (ai), given in 13.

αi = softmax(ei) (13)
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Fig. 1: Detailed architecture diagram of the proposed attention-driven LSTM model. The model has the following

processing order: (a) sample molecule with its respective SMILES representation of an arbitrary size, (b) initial

encoding to form the SMILES continuous-valued vector xi, (c) the 32-dimensional character embedding layer

producing matrix E, 1D convolutional layer, and 1D max pooling layer, (d) bidirectional LSTM layer, (e) self-

attention layer with trainable weights Wa and ba (f) global average pooling layer, dense layer with 32 nodes and

leaky ReLU activation, and dense layer with single node and linear activation.

4.5 Model architecture

Our model architecture is shown in Figure 1. It’s

layer decomposition and respective hyperparameters

are given in Appendix A. 1D-convolutional filters are

applied on the embedding matrices to extract mean-

ingful features, a technique also employed by Paul et

al’s SINet [3] and CheMixNet [20], followed by a Max

Pooling layer to only retain relevant information ex-

tracted from the filters while simultaneously reducing

the shape of the matrix read by the LSTM layer. A

Bidirectional LSTM layer is subsequently used, followed

by the self-attention layer. Afterwards, a global average

pooling layer is used as a dimensionality reduction tech-

nique and reducing the number of trainable parameters

(rather than flattening the previous tensor). Two dense

layers follow the global average pooling layer, with leaky

rectified linear unit (ReLU) and linear activation func-

tions respectively.

4.6 Software

The presented network was implemented using Keras

[60] and TensorFlow [61], while pre-processing steps

were completed with Sci-Kit Learn. We note here that

the TensorFlow CuDNN LSTM layer [62], a GPU-

specific LSTM implementation to achieve maximum

computational throughput, was used in our model

to accelerate the training process. The NREL OPV

dataset used in this study can be found in the origi-

nal work [8].

5 Results & Discussion

5.1 Experimental Configuration

For the NREL OPV dataset, we use the train, valida-

tion, test sets provided by St. John et al [8], which con-

tain ∼8.1E4/5E3/5E3 molecules respectively. We per-

formed a 90/5/5 stratified split of the Harvard CEP

dataset (∼1.1E6/5.1E4/5.1E4 molecules) to form the

individual training, validation, and test sets respec-

tively. In accordance with [36], a 80/10/10 stratified

split was used for the ZINC-250k dataset.

We use mean squared error (MSE) as the loss func-

tion for our proposed attention model. And, in accor-

dance with related works, we use the mean absolute

error (MAE) as our evaluation metric. Models were

trained using the Adam [63] optimizer with a starting
learning rate of 1E − 4, using β1 = 0.9 and β2 = 0.999.

Callback functions were used during training to reduce

the learning rate by a factor of 0.8 when the MAE of

the validation set plateaued. All training was done on a

NVIDIA GeForce RTX 2070 GPU, with 8GB of mem-

ory.

5.2 NREL OPV dataset prediction results

The NREL OPV test-set results on the B3LYP/6-

31g(d) DFT computed molecules are shown in Table 1,

showing the resultant MAEs of each property. Our net-

works’ results are compared to leading (graph-based)

message-passing neural networks (MPNN). The best re-

sults obtained from [8] between the single-input single-

ouput (SISO) and single-input multiple-output (SIMO)

MPNNs are included in the table. Furthermore, results

from a MPNN adapted from Jørgensen et al’s SchNet

with edge updates [19], trained on DFT-optimized 3D
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coordinates, are also included in the table. The results

of our proposed attention-LSTM network are compared

to each of these models.

DFT-computed properties on conformational iso-

mers were used to determine an optimal or objective

error rate. The size of the considered molecules induces

different energy minimization routine convergences of

lowest-energy states, which generates slightly different

optoelectronic properties [8]. These convergence incon-

sistencies provided an acceptable range of values for

each considered property, from which the conformer

MAEs were computed. Since our model does not con-

sider atomic spatial positioning, these conformer MAEs

effectively served as the target error rate for our models

and are included in the “Conf.” column of Table 1.

B3LYP/6-31g(d) Conf. MPNN SchNet Our

Gap 28.0 35.4 32.7 25.78
HOMO 22.0 29.4 27.0 22.97
LUMO 25.5 27.9 24.8 21.25
Spectral Overlap 81.3 149.2 96.6 96.42
Polymer HOMO 37.4 47.4 56.9 43.42
Polymer LUMO 45.0 46.8 56.8 42.91
Polymer Gap 46.3 56.3 69.8 51.66
Pol. Optical LUMO 42.6 43.9 57.2 41.72

Table 1: Results on NREL Dataset. This table con-

tains the MAEs for each property. The spectral overlap

MAEs are provided in W/mol, whereas the other prop-

erties’ MAEs are given in meV. The best scores between

SISO and SIMO models [8] are shown in the “MPNN”

column.

Separate attention-LSTM networks were trained on

each property. Each attention-LSTM model was trained

for approximately 50 epochs. For models trained on

monomer properties, a maximum of 20 augmented

molecules were generated for each original training sam-

ple, which constituted the training dataset. However,

since there were far fewer training samples that con-

tained polymer properties (around half of the original

training set), a maximum of 50 augmented molecules

were generated for each original training sample. Dur-

ing test-set evaluation, utilizing TTA, a maximum of

35 augmented molecules were used.

5.3 Harvard CEP dataset prediction results

Both our attention-LSTM model and the MPNN [8]

were trained on the Harvard CEP dataset for 75 epochs.

We employed a SIMO framework for the MPNN since

it attained better results over individually trained SISO

models [8]. We note here that our attention-LSTM

model was not trained with augmented SMILES sam-

ples, nor did we employ TTA during evaluation. The

Harvard CEP test-set results are shown in Table 2,

which displays the MAEs for each property. Unlike

the NREL OPV dataset, the Harvard CEP dataset did

not provide any information on conformational isomers,

hence a target or optimal error rate could not be estab-

lished.

BP86/def2-SVP MPNN Our

Gap (meV) 12.52 10.52
HOMO (meV) 8.83 6.71
LUMO (meV) 9.32 7.11

Table 2: Results on CEP Dataset. This table con-

tains the MAEs of each property.

5.4 ZINC-250k dataset prediction results

Our data augmentation technique was used on the

training samples while also employing TTA. A maxi-

mum of 50 augmented samples were used for both the

training and testing data. Our model was trained for

approximately 20 epochs. Separate models were trained

for each individual property. Our testset results on

ZINC-250k are shown in Table 3. We compare our re-

sults to other contemporary models.

Model logP QED

ECFP [64] 0.38 0.045
CVAE [51] 0.15 0.054
CVAE ENC [51] 0.13 0.037
GraphConv [17] 0.05 0.017
All SMILES VAE [36] 0.005 0.0052
Our 0.0042 0.0031

Table 3: Results on ZINC-250k Dataset. This table

contains the MAEs for each property.

5.5 Discussion

The attention-LSTM network showed immense im-

provement on the NREL OPV dataset compared to

the graph networks. The attention-LSTM network not

only significantly reduced the MAE for every prop-

erty compared to contemporary models, but also scored

within the optimal error range for the monomer Gap

and LUMO as well as the polymer LUMO and Opti-

cal LUMO. Our model achieved a monomer Gap MAE

of 25.78 meV and a monomer LUMO MAE of 21.25
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meV, a percent decrease from the leading SchNet of

21.16% and 14.31% respectively; while achieving a poly-

mer LUMO MAE of 42.91 meV and polymer Optical

LUMO MAE of 41.72, a percent decrease from the

leading MPNN of 8.31% and 4.97% respectively. The

success of the attention network can not only be at-

tributed to the inclusion of the attention-mechanism it-

self, but also the training augmentation technique used,

as well as employing TTA during evaluation. Similar to

its performance on the NREL OPV dataset, the atten-

tion network outperforms the MPNN on every property

of the Harvard CEP dataset; achieving an average re-

duction among all properties of 21.23%. The results on

the CEP dataset demonstrate that although network

performance benefits from augmented training samples

and TTA, it is not dependent on these methods. It

is also noted here that the attention models were not

pre-trained on any data beforehand, hence no transfer

learning techniques were used to enhance results.

We further evaluated our regressor on the ZINC-

250k dataset. Our model reduced the current state-of-

the-art [36] logP and QED MAE by 16% and 40.39%

respectively, hence making the attention-LSTM with

TTA an auspicious model and augmentation routine

for drug evaluation.

Although graph-based models have dominated re-

cent studies on quantum mechanical and OPV predic-

tive modeling, the feature generation can be impracti-

cal. The spatial information on which graph networks

depend are not always available when searching for new

materials [65], whereas textual descriptors ubiquitous

and benefit from their simplicity and ease of genera-

tion.

However, generating the necessary 2D or 3D data

for graph networks from textual data, using tools such

as RDKit [66], is also more time consuming than us-

ing the textual features themselves. HTVS methods are

time-sensitive operations which seek to minimize com-

putation time for inferring molecular properties, since

such methods operate on a large order of candidate

compounds. Additional, time-intensive pre-processing

steps, such as text to spatial coordinate calculations for

graph network inputs, only hinder HTVS performance.

Mitigation of such timely additional processing steps is

ideal.

Using textual descriptors also allowed us to augment

our data from a limited training set. The augmentation

routine used was simple and computationally efficient.

This is a useful data generation tactic for other size-

limited datasets (such as the publicly available Quan-

tum Machine datasets: QM7, QM8 and QM9), while

not inducing severe overfitting.

The interpretability of the attention network is also

more transparent compared to other proposed deep

learning models. The attention layer enables the net-

work to pinpoint constituents of the molecule which di-

rectly influence the prediction [26]; while the embedding

layer displays learned relationships between SMILES

tokens in a reduced (2D or 3D) vector space [65].

6 Conclusion

In this work, we focused on predicting properties of

organic photovoltaic molecules, namely the HOMO,

LUMO and Gap, which most directly impact the PCE.

A novel attention-driven LSTM network was presented

that is capable of predicting such optoelectronic prop-

erties by learning strictly from the SMILES repre-

sentation of the molecule. This network was coupled

with an effective data augmentation routine, which

was utilized not only for generating new training sam-

ples, but also during the testset evaluation. The net-

work was tested on two contemporary OPV datasets

(NREL OPV and Harvard CEP) and was compared

against leading (graph-based) message passing neural

networks. Our attention-driven LSTM obtained better

results than the graph networks and, for some proper-

ties, were within the conformational isomer-derived op-

timal error range for the NREL OPV dataset. We fur-

ther demonstrated that our model is capable of general-

izing well to cross-disciplinary tasks, specifically phar-

maceutical drug design. Our model greatly reduced the

leading VAE-based model’s MAE across all considered

targets on the ZINC-250k dataset.

A Network layer decomposition

The summary shown below details the sequential model archi-
tecture. “He normal” kernel initialization was used for each
layer that required an initializer. The character embedding
layer had a 32-dimensional output. A kernel size of 3 and the
linear activation function was used for the Conv1D layer. A
pool size of 2 was used for the MaxPooling layer. The bidirec-
tional LSTM consisted of 1024 units. The self-attention layer
consisted of 1024 units and used ReLU activation. The penul-
timate dense layer used leaky ReLU activation with α = 0.1
and the final dense layer used linear activation. The total
number of trainable parameters for this model is: ∼4.3e6.

_____________________________________________________

Layer (type) Output Shape Param #

=====================================================

Input (None, 270) 0

_____________________________________________________

Embedding (None, 270, 32) 1184

_____________________________________________________

Conv-1d (None, 270, 256) 24832

_____________________________________________________
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Max-pool-1d (None, 135, 256) 0

_____________________________________________________

Bi-LSTM (None, 135, 1024) 3153920

_____________________________________________________

Self-attention (None, 135, 1024) 1048577

_____________________________________________________

Global-avg-pool-1d (None, 1024) 0

_____________________________________________________

Dense (None, 32) 32800

_____________________________________________________

Dense (None, 1) 33

=====================================================

Total params: 4,261,346

Trainable params: 4,261,346

Non-trainable params: 0
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Duvenaud, José Miguel Hernández-Lobato, Benjamı́n
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-
Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and
Alán Aspuru-Guzik. Automatic chemical design using a
data-driven continuous representation of molecules. ACS
Central Science, 4(2):268–276, Jan 2018.

52. Craig A James. Opensmiles specification, May 2016.
53. Yarin Gal and Zoubin Ghahramani. A theoretically

grounded application of dropout in recurrent neural net-
works, 2015.

54. Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest,
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