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ABSTRACT

Data Mining is a multidisciplinary science combining concepts from machine learning,

statistics, and database systems to address problems using universal principles based

on mathematical hypotheses. It involves understanding and interpreting data from any

source and extracting useful information. A data mining approach can convert data of

any form, and thus, it has been successful in solving problems across diverse applications

including social media, finance, medical and scientific applications. This thesis discusses

development of data-driven solutions for knowledge discovery in scientific applications.

Understanding the processing-structure-property-performance relationships are essen-

tial for scientific discovery and prediction. A forward problem is based on an understand-

ing relationship between processing method, and it’s subsequent structure and the effect

on the resultant property and performance. An inverse problem is an approach of opti-

mizing or reverse engineering the desirable structure and the processing involved with a

desired property and performance. For applications in scientific computing, this trans-

lates to property prediction and knowledge discovery using data-driven methods. This

dissertation proposal attempts to advance data mining and knowledge discovery method-

ologies to solve some of the challenging sub-problems in the domain of both forward and

inverse problems pertaining to scientific applications.
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CHAPTER 1

Problem Description and Research Objective

1.1. Data Mining and Scientific Applications

Traditionally, mechanical engineers, chemists and materials scientists relied on exper-

imentally generated or simulation-based computational data to discover new materials

and understand their characteristics. In the past decade, there has been a growing inter-

est and shift towards data-driven scientifc discovery [4, 5]. It has stimulated researchers’

interest in the application of advanced data-driven based machine learning techniques for

accelerated discovery and design of materials and chemical compounds, supported by the

Materials Genome Initiative (MGI) [6]. MGI intends to half the cycle time of development

of new materials to implementation in real-world cases - from 20 yrs to 10 yrs. Data-driven

techniques provide faster methods to know important properties of chemical compounds

and to predict feasibility to experimentally synthesize in chemical laboratories, and thus

promises to accelerate the research process of new materials development.

There have been many initiatives to assist scientific discovery using machine learning

techniques [7–12]. Ward et al. [8] used random forests (RF) and clustering for discovering

new photovoltaic materials and metallic glass alloys. Agrawal et al. [11] used linear, poly-

nomial and support vector machine (SVM) regression for the prediction of fatigue strength

of steels from their composition and processing parameters. Liu et al. [12] used decision

trees and SVMs for reducing the search space using feature selection for microstructure
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optimization. Xue et al. [9] used support vector regression (SVR) to infer the thermal

hysteresis of NiTi-based shape memory alloys to accelerate the search for materials with

low thermal hysteresis properties. Further, deep neural networks have gained significant

attention and enjoyed success in applications in materials science [13–18].

1.2. Challenges

Data Mining for scientific discovery provides a unique set of challenges. The data

is not only heterogeneous, multi-scale, multi-dimensional, and collected from multiple

contexts, but also often, the datasets can be much smaller than comparable datasets in

other domains. It is essential to design the problem into an appropriate form, process

the data appropriately, and craft suitable models that fit both the nature of the problem

and that of the data, and thereby, improving the accuracy and reliability of the models.

Few of the broad challenges encountered in developing solutions for the two broad classes

of problems in materials mining: forward (property prediction) and inverse (materials

discovery) [4] are discussed.

1.2.1. Forward Problems

Processing-structure-property-performance (PSPP) [19] relationships form the backbone

of discovery and prediction of materials. How a certain material is processed decides its

subsequent structure, and that, in turn, impacts the property, and the performance of the

device developed using that material. The molecular structure of a chemical compound

determine the properties exhibited by that compound, and in turn, impact where and how
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that compound can be used. The forward materials problem translates into a property

prediction problem with various hierarchies of materials structure impacting the property.

1.2.1.1. Challenges in mining small high-dimensional datasets. There are two

fundamental sources of materials data: experimental and computational data. However,

one of the most significant challenges, in particular for experimental datasets, is the small

size of datasets. Experiments are expensive with respect to both human and scientific

resources. However, many of the feature sets have thousands of features. For instance,

molecular fingerprints (Chapters 2, 3 and 4) are one type of representation used to describe

organic molecules, and the dimensionality of the feature set can vary from 2000 to 4

million. The essence of supervised learning is based on creating a model that can learn

the relationship between the parameters and the target label. However, when the dataset

is much smaller compared to the feature set, learning the parameters become difficult due

to the curse of dimensionality [20].

1.2.1.2. Challenges in data representation. One of the challenges with mining sci-

entific datasets is that one source of data may not be sufficient for predicting the desired

property. However, this is not directly comprehensible at the commencement of the min-

ing process. This requires an iterative process of feature development to augment the

model with additional information, and involves organizing and manipulating multiple

forms of data and representing in a way that is suitable for learning (Chapters 2, 4 and

5).

1.2.1.3. Challenges in cost-effective modeling. Another challenge in developing

many predictive modeling systems is keeping the training time low. Models based on

algorithms such as deep neural networks are very powerful and flexible, and are able to
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successfully develop accurate models for almost any kind of prediction problem. However,

most of these models suffer are expensive in terms of training time. This becomes even

more critical when machine learning is used for developing surrogate models for scientific

simulations. In such cases, a model needs to be fast to train to be useful (Chapter 5).

1.2.2. Inverse Problems

While the forward PSPP problems deal with deducing the property given the processing

method and structure, the inverse problem entails suggesting and discovering structures

and processing techniques for a desired property or performance. This is usually more

challenging as the relationship in the forward directions is often many to one, and there-

fore, there are no inverse functions. Multiple processing techniques can produce the same

structure, and many distinct structures can lead to the same property.

1.2.2.1. Challenges in searching high-dimensional materials spaces. One of the

challenging and essential inverse problems in materials science is aiming to obtain the

complete set of all possible microstructures for optimizing a given property. Forward

models can compute properties for a given microstructure, but discovering all possible

microstructures satisfying a property is expensive. Exhaustive search based methods

would be computationally expensive. Further, methods like pattern search or trust re-

gion search fail to converge as these methods depend on iteratively searching for points

that converge. Therefore, it becomes imperative to develop methodologies that can pro-

vide optimal solutions without becoming prohibitively expensive based on computational

resource demands (Chapters 6 and 7).
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1.3. Dissertation Problem Statement

The dissertation problem statement is ”to develop data-driven optimization and ma-

chine learning systems for knowledge discovery in scientific applications”. This disser-

tation focuses on the development of systems for prediction and optimization tasks for

scientific applications in disciplines such as chemistry, materials science, aeronautics and

manufacturing. These applications employ several techniques such as sequence predic-

tion, multi-input single-output (MISO) modeling and iterative machine learning. In this

dissertation, three lines of work are pursued. The first discusses dealing with feature ma-

nipulation, ensemble learning, multiple representation learning for property prediction of

molecular compounds. The second discusses a real-time iterative machine learning based

surrogate model to predict the temperature profile for an additive manufacturing pro-

cess. The third discusses discovering numerous distinct optimal solutions by narrowing

the search space of constrained design problems. These three applications employ sev-

eral techniques including synthetic dataset generation, feature reduction, and selection,

feature manipulation, ensemble learning as well as deep learning.

1.4. Thesis Organization

In this thesis, we explore how data-driven techniques can be used to solve a wide

variety of scientific discovery problems. We present two types of work, one that resorts

to predictive modeling, and the other that concerns with optimization. A total of six

works are presented in this thesis. The first four works focus on developing machine

learning based prediction models known as forward modeling. The last two works focus

on development of data-driven optimization known as inverse modeling.
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The first three works relates to development of machine learning models on organic

molecules. The first work (Chapter 2) concerns development of a multi input single out-

put deep neural architecture for predicting chemical properties across several benchmark

datasets. This work utilizes both text and vector-based descriptions of molecules as inputs

to the neural networks. The second work (Chapter 3) propounds a tree-based ensemble

model using extremely randomized trees for prediction of solar cell band gaps from a very

small dataset of 350 molecules. As the model is based on ensemble of trees, it allows

for deeper analysis of which part of the molecule is responsible for the property. The

third work (Chapter 4) utilizes pieces from the first and second work. A transfer learning

approach is undertaken for prediction of organic solar cell properties. An initial model is

trained on a large database of first principle based calculations of hypothetical molecules.

The pretrained model is then trained on the small dataset of 350 molecules. It utilizes

two different text based representations as inputs.

The fourth work (Chapter 5) develops a machine learning based surrogate model for

additive manufacturing simulations. Additive Manufacturing (AM) [21, 22] techniques

are becoming extremely popular due to the capability to produce elaborate designs as

well as fast prototyping. Although AM may be used for rapid prototyping, commonly

referred to as 3D printing, it is also used for developing finished product using techniques

such as Direct Metal Deposition. It becomes imperative to design a tool for simulating

the process. However, traditional finite element method (FEM)-based simulation based

tools take a lot of computational resources and time. In this work, a predictive model

is developed to form an essential component of a scientific framework for a ML-based

real-time control system of additive manufacturing.
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Finally, the fifth and sixth works develop a data-driven solution for constrained mi-

crostructure optimization problems. Traditional optimization algorithms such as linear

programming are able to find only a single optimal solution. Algorithms such as genetic

programming take a lot of time for converging. Black box algorithms such as pattern

search are unable to converge because of the number of constraints in the problem space.

In the fifth work (Chapter 6), a data-driven approach based on sampling statistics were

employed to reduce the search space and converge on many optimal and near-optimal so-

lutions. In the sixth work (Chapter 7), decision trees were employed to iteratively reduce

the search space by creating candidate solutions, extracting sub-optimal solution and then

repeating the process.
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CHAPTER 2

Predicting Chemical Properties using Mixed Deep Neural

Networks and Multiple Molecular Representations

2.1. Introduction

Traditionally, chemists and materials scientists have relied on experimentally gener-

ated or simulation-based computational data to discover new materials and understand

their characteristics. The slow pace of development and deployment of new/improved

materials has been considered as the main bottleneck in the innovation cycles of most

emerging technologies [23]. Data-driven techniques provide faster methods to identify

important properties of chemical compounds and to predict feasibility to synthesize in

chemical laboratories and thus promise to accelerate the research process of new materi-

als development. There have been many initiatives to computationally assist molecular

and materials discovery using machine learning (ML) techniques [4, 7, 8, 11, 24–27].

Conventional machine learning approaches for predicting chemical properties have em-

phasized the importance of leveraging domain knowledge when designing model inputs.

Current research has demonstrated that deep neural networks (DNNs) have generally

outperformed traditional machine learning models. DNN models are capable of learning

representations, which sets it apart from conventional ML algorithms used in chemistry.

Representation learning is the process of transforming input data into a set of features

that can be effectively exploited to identify patterns from the data. In the context of
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chemistry, the analogous process would be to use deep learning (DL) to examine chemical

structures and to construct features similar to engineered chemical features, with minimal

assistance from an expert chemist. This approach that leverages representation learning

of deep neural networks is a significant departure from the traditional research paradigm

in chemistry.

In this work, we develop CheMixNet- a set of neural networks for predicting chemical

properties by leveraging multiple molecular representations as inputs. We used simpli-

fied molecular-input line-entry system (SMILES) [28] notations as sequence inputs and

molecular fingerprints as vector inputs. SMILES is a line notation of chemical structures

which encodes the connection table and the stereochemistry of a molecule as a line of

text. Our work improves upon the existing state-of-the-art approach of directly learning

from vector representations such as molecular fingerprints or chemical text representa-

tions such as SMILES by harnessing the network structure of both forms of representa-

tions. CheMixNet is a variation of multi-input-single-output (MISO) [29] architectures

that learn the chemical properties from a mix of intermediate features learned from two

different input representations - a vector input in the form of molecular fingerprints and

a sequence input in the form of SMILES strings. In our experiments, we used MACCS

fingerprints - a first 2D representation of chemical structure using 167 features. Although

MACCS usually perform worse than other molecular fingerprints, we chose MACCS be-

cause of its simplicity and ease of interpretation. We perform significant experimentation

to determine the best neural network structure for the CheMixNet architectures.

We evaluated the effectiveness of our mixed approach for building DNN architectures

by training CheMixNet on six different datasets- a large dataset composed of 2.3 million
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samples from the Harvard Clean Energy Project (CEP) database and five other rela-

tively smaller datasets from the MoleculeNet [30, 31] benchmark. Compared to other

DL models, CheMixNet architecture outperforms fully connected MLP models trained on

molecular fingerprints, recurrent neural networks (RNN) and 1-dimensional convolutional

neural network (CNN) models trained on SMILES, as well as other models - convolutional

molecular graphs (ConvGraph) [32] and Chemception [33]. For instance, we achieved a

mean absolute percentage error (MAPE) of 0.24 % on the CEP dataset; this is significantly

better than the MAPE of 0.43 % using CNN-RNN model. The CheMixNet architectures,

as well as the benchmark models, are made accessible for the research community at

https://github.com/paularindam/CheMixNet [34].

2.2. Background & Related Works

In this section, we present a description of the two molecular representations we use in

this work - SMILES and molecular fingerprints, and discuss existing deep neural architec-

tures for predictive modeling of chemical properties in the Quantitative structure-activity

relationship (QSAR)/Quantitative structure-property relationship (QSPR) [35] modeling.

2.2.1. SMILES & Fingerprints

Line notations are linear representations of chemical structures which encode the connec-

tion table and the stereochemistry of a molecule as a line of text [36]. SMILES [28] is

the most popular specification in the form of a line notation to describe the structure

of chemical species using short ASCII strings encoding molecular structures and specific

instances. One or more organic molecules attach to form long continuous chains known
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as branches. SMILES has a grammar structure in which alphabets denote atoms, special

characters such as = and ≡ bond denote the type of bonds, encapsulated numbers indicate

rings, and parentheses represent side chains. In this work, we limit ourselves to character

level representation and do not explicitly encode the grammar.

Molecular fingerprints are representations of chemical structures, successfully used in

similarity search [37], clustering [38], classifications [39], drug discovery [40], and virtual

screening [41], a standard and computationally efficient abstract representation where

structural features are represented by either bits in a bit string or counts in a count

vector. Fingerprints were motivated by the need to find materials that match target

material properties. They follow the assumptions that the properties of the material is a

direct function of its structure and that materials with similar structure are likely to have

similar physical-chemical character. Different fingerprints represent different aspects of

a molecule, and thus each type of fingerprint can have different suitability for mapping

to particular physical property. Various machine learning (ML) algorithms have been

used to predict the activity or property of chemicals using molecular descriptors and/or

fingerprints as input features. In our experiments, we used MACCS fingerprints [42, 43] - a

primitive 2D representation of chemical structure using 167 features. MACCS fingerprints

were originally developed for the purpose of substructure screening. Unlike other hashed

1024 bit fingerprint representations such as Atom Pair and Topological Torsion that are

difficult to comprehend, MACCS fingerprints represent the counts of the presence or

absence of chemical fragments, and are easily comprehensible with each key having its

own definition (e.g. key 99 indicates if there is a C=C bond, key 165 indicating if there
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is a ring present, key 125 representing if there are more than one aromatic rings in the

structure).

2.2.2. Related Works

In their SMILES2vec [44] paper, Goh et al. developed a RNN neural network architec-

ture trained on SMILES for predicting chemical property. SMILES2vec was inspired by

language translation using RNN. Goh et al. did not explicitly encode information about

the grammar of SMILES. Instead, they anticipate RNN units to learn these patterns im-

plicitly and develop intermediate features that would be useful for predicting a variety

of chemical properties. RNNs, particularly those based on LSTMs [45] or GRUs [45] are

effective neural network designs for learning from text data. Their effectiveness has been

demonstrated in multiple works such as the Google Neural Translation Machine that uses

an architecture of 8+8 layers of residual LSTM unit [46]. In SMILES2vec, they modeled

sequence-to-vector predictions, where the sequence is a SMILES string, and the vector is

a measured chemical property. As SMILES is a chemical language and different from spo-

ken language, commonly-used techniques in natural language processing (NLP) research,

embeddings such as Word2vec [47] cannot be directly applied. In addition, they explored

the utility of adding a 1D convolutional layer between the embedding and GRU/LSTM

layers. Goh et al. [33] developed Chemception, a deep CNN for the prediction of chemical

properties, using only the images of 2D drawings of molecules. It was inspired by Googles

Inception-ResNet [48] deep CNN for image classification. They utilized raw data in the

form of 2D drawings of molecules that requires the minimal amount of chemical knowledge
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to create, and investigated the viability of augmenting and possibly eliminating human-

expert feature engineering in specific computational chemistry applications. Chemception

was developed based on the Inception-ResNet v2 neural network architecture that com-

bines arguably the two most important architecture advances in CNN design since the

debut of AlexNet [49] in 2012 - Inception modules and deep residual learning. During

the training of Chemception, additional real-time data augmentation to the image was

performed so as to bolster the limited number of data available for each task. Finally,

fully connected (MLP) architectures trained on fingerprint representations [14, 50, 51]

are very popular in the cheminformatics community for predicting chemical properties.

Although, MLP architectures trained on fingerprints are one of the earliest applications

of deep learning in QSAR/QSPR modeling, they have consistently outperformed tradi-

tional ML models such as random forest and logistic regression, and DNN methods such

as convolutional molecular graphs.

2.3. Method

2.3.1. Motivation

Several works [24, 52] have demonstrated the effectiveness of ensemble of different kinds

of neural networks for improvement in model performance over the individual candidate

neural networks. Fully connected deep neural network architectures trained on finger-

print representations [14, 50, 51] are very popular in the cheminformatics community for

predicting chemical properties. Goh et al. [53] propounded the SMILES2vec architecture

for treating SMILES strings as text sequences and trained recurrent neural network ar-

chitectures. SMILES2vec and MLP architectures have been among the most successful
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neural network architectures in predicting chemical properties. In this chapter, we har-

ness the efficacy of these architectures and mix them into one architecture which we refer

as CheMixNet. SMILES and fingerprints are the two most common representations of

chemical molecules. By allowing a neural network to learn from both these representa-

tions, we could increase the generalizability and the scope of the architecture. Sequence

classification on shorter texts is generally harder than on longer texts and usually has

worse performance than longer texts. As SMILES2vec essentially treats the SMILES as a

text with character level embedding, the performance of SMILES2vec degrades on shorter

strings. Also, the performance of MLP models trained on molecular fingerprints generally

varies based on the size of the molecule (performance varies based on small versus large

organic molecules). CheMixNet provides a model architecture that can leverage the best

of both forms of representation learned from the two inputs using appropriate neural net-

work components for them. This provides the network with the ability to automatically

assess the degree to which each representation can be leveraged for learning the given

chemical property.

2.3.2. Design

Figure 4.1 illustrates our design approach for building CheMixNet models. We present

three different architectures where we mix the output features learned using different

types of models to learn the chemical properties from the two molecular representations

as inputs- the fingerprints and the SMILES formula; hence, referred as CheMixNet. They

are basically composed of two neural network branches - a sequence modeling branch that

learns from the SMILES sequences using 1-D CNN and/or RNN, and a fully connected
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C1C=CC=C1c1cc2[se]c3c(ncc4
ccccc34)c2c2=C[SiH2]C=c12

SMILES Fingerprint

Figure 2.1. The proposed CheMixNet architecture for learning from the two
molecular representations. The blue branch represents candidate neural
networks for learning from SMILES sequences. Option 1 uses only LSTM-
s/GRUs for modeling the SMILES sequences, option 2 uses only 1-D CNNs
for sequence modeling, and option 3 uses 1-D CNNs followed by LSTM-
s/GRUs. The fully connected (FC) branch of the model with molecular
fingerprint inputs is illustrated in red. The orange part represents the fully
connected layers that learn the final output from the mix of intermediate
features learned by the two network branches. We exemplify the molecular
fingerprint and SMILES with one representative example in this illustration.

(FC) branch that learns from the MACCS fingerprint representation. The two input

representations are shown in the top of Figure 4.1. Since the SMILES representations are

composed of a sequence of characters, the first network branch for learning from SMILES

are composed of one of the following: 1) RNN, 2) 1-D CNN, and 3) 1-D CNN followed

by RNN. Since the fingerprints are composed of bit or count vectors, the second branch

for learning from them are composed of multiple layers of fully connected layers. The

individual models that leverage a single input representation are composed of one of these

components along with some fully connected layers at the end.

To build the mixed DNN architectures, we combine the intermediate features learned

using the two branches and applied some fully-connected layers for learning the final
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regression or classification output. Depending on the learning task, the output layer

uses sigmoid activation for the binary classification tasks or linear activation for the

regression tasks. Since we have three candidate neural networks for sequence modeling

using SMILES, ChemixNet contains three neural network architectures which we refer

as CNN-FC, RNN*FC, and CNN-RNN*FC where the ‘-’ represents networks stacked in

sequence and ‘*’ represents the combination of intermediate features learned using two

parallel network branches.

2.4. Data

2.4.1. Description of the Datasets

We demonstrate the effectiveness of our approach for designing DNN architectures for

learning chemical properties from SMILES and fingerprints using six different datasets

as shown in Table 2.1. First, Harvard CEP Dataset [14, 54] contains molecular struc-

tures and properties for 2.3 million candidate donor structures for organic photovoltaic

cells. Organic Photovoltaic cells (OPVs) [55–58] are lightweight, flexible, inexpensive and

more customizable compared to traditional silicon-based solar cells [59]. For a solar cell,

the most important property is power conversion efficiency or the amount of electricity

which can be generated due to the interaction of electron donors and acceptors, which

are dependent on the HOMO values of the donor molecules. In this work, we considered

highest occupied molecular orbitals (HOMO) as the target property as it determines the

power conversion efficiency of a solar cell according to the Scharber model [60]. Next,

we used the Tox21, HIV, ESOL, and FreeSolv (Experimental and Computed) datasets

from the MoleculeNet [30, 31] benchmark repository; they involve two classification and
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two regression tasks. The Tox21 dataset is an NIH- funded public database of toxicity

measurements comprising of 8981 compounds on 12 different measurements ranging from

stress response pathways to nuclear receptors. This dataset provides a binary classification

problem of labeling molecules as either toxic or non-toxic. The FreeSolv dataset is com-

prised of 643 compounds that have computed and experimental hydration free energies

of small-molecules ranging from 25.5 to 3.4 kcal/mol; we refer to the dataset contain-

ing experimental values as FreeSolv-Exp and the one with computed property values as

FreeSolv-Comp. Hydration free energy is a physical property of the molecule which can be

computed from first principles. ESOL is a dataset containing 1128 compounds with water

solubility (log solubility in mols per litre) for common organic small molecules. Lastly,

we evaluated the performance of CheMixNet on the HIV dataset obtained from the Drug

Therapeutics Program AIDS Antiviral Screen, which measured the ability of 41,913 com-

pounds to inhibit HIV replication in vitro. Using the curation methodology adopted by

MoleculeNet, this dataset was reduced to a binary classification problem of active and

inactive compounds. The original HIV dataset was very imbalanced with the minority

class comprising less than 4 % of the dataset. In our work, we decided to balance the

minority classes by under-sampling the majority class by randomly selecting 1,443 (size

of samples from the minority class) samples. Although this led to a significant reduction

in the size of the dataset, it also allowed us to investigate the viability of CheMixNet

architecture on smaller datasets without significant network topology changes.
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Table 2.1. Description of all the 5 datasets used to evaluate the perfor-
mance of CheMixNet architectures. The original HIV dataset had 41,193
compounds but reduced to 2,886 after under-sampling.

Dataset Property Task Size
CEP Highest Occupied Molecular Orbital Energy Regression 2,322,849
HIV* Activity Classification 2,886
Tox21 Toxicity Classification 8,981
FreeSolv-Exp (Experimental) Solvation Energy Regression 643
FreeSolv-Comp (Computed) Solvation Energy Regression 643
ESOL Solubility Regression 1,128

Table 2.2. Vocab size and Maximum Input length for the datasets

Dataset Size of Vocabulary Maximum Input Sequence Length
CEP 23 83
HIV 54 400
Tox21 42 940
FreeSolv-Exp 32 83
FreeSolv-Comp 32 83
ESOL 33 98

2.4.2. Dataset Preparation

For the SMILES sequence, we used 1-hot encoding to convert the SMILES into a fixed

length representation. The length of the sequence was determined by the length of the

longest SMILES sequence in each dataset. We applied zero padding for shorter strings so

that we had a uniform sequence of size equal to the maximum length for each dataset.

The vocabulary size was determined by finding the number of unique characters in each

dataset. Table 2.2 describes the size of vocabulary and the maximum input length for all

datasets. The datasets were randomly split in the ratio of 4:1 into training and test sets.

Further, the training set was split into 9:1 ratio for training and validation.
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2.5. Experiments & Results

In this section, we present the experimental settings and results of the CheMixNet

architectures and the comparison with other contemporary DL models on the 2.3 million

CEP dataset as well as the five datasets from the MoleculeNet benchmark.

2.5.1. Experimental Settings

The DNN models were implemented using Python and Keras [61] with TensorFlow [62]

as the backend. They are trained using Adam as the optimization algorithm with a mini-

batch size of 32. For generating the MACCS fingerprints, we used RDKIT [63] library.

Scikit-Learn [64] was used for data preprocessing and for evaluating the test set errors.

All experiments are carried out using NVIDIA DIGITS DevBox with a Core i7-5930K 6

Core 3.5GHz desktop processor, 64GB DDR4 RAM, and 4 TITAN X GPUs with 12GB

of memory per GPU. For our experiments, we used a learning rate of 0.001. We used the

mean squared error (MSE) as the loss function for the regression tasks and used the mean

absolute % error (MAPE) as the performance metric. For classification tasks, we used the

binary cross-entropy as the loss function and used the area under the ROC curve (AUC) as

a performance metric. Early stopping was used during training to avoid over-fitting. For

the benchmark results for graph convolution networks, we used the DeepChem [65] library.

For benchmarking with Chemception, there is no official public library, so we implemented

the network using Keras which is also available in the CheMixNet repository [34].

We used the libraries hyperas [66] and hyperopt [67] to perform Bayesian hyperpa-

rameter search [68] to obtain the best choice of layer depth (for MLPs, 1-D convolutional

and LSTM/GRU units), number of recurrent units for LSTMs/GRUs and learning rate.



41

Further, the Bayesian hyperparameter search was performed only for the CEP database.

Once we determined the best hyperparameters for CEP, we did not change any hyperpa-

rameter except the batch size. For the CEP dataset, we used a batch size of 64; for the

two classification datasets (HIV and Tox21), we used a batch size of 32; for the ESOL

and FreeSolv, we used a batch size of 16.

2.5.2. Results

We evaluated the effectiveness of our mixing approach for building DNN architectures to

learn from both molecular representations by training the CheMixNet using six different

datasets. To compare their performance, we also trained other state-of-the-art architec-

tures for all datasets used. This includes the fully connected (FC) networks trained on

the MACCS fingerprints, the two broad classes of SMILES2vec architectures - RNN and

CNN-RNN, novel experimentation on SMILES using 1-D convolutions, ConvGraph and

Chemception model. For the RNN and CNN-RNN architectures, we experimented using

both LSTM and GRU units. As previous works [69, 70] have demonstrated the efficacy of

1-D CNN to perform effectively in text prediction without any recurrent component, we

compared against 1-D CNN trained on SMILES sequences. Lastly, we compare against

ConvGraph architecture that uses the molecular structure encoded as graphs as input,

and Chemception architecture that uses chemical images as input.

2.5.2.1. Performance on the CEP Dataset. Figure 2.2 demonstrates the perfor-

mance results of different DNN models on the CEP dataset. For the presented results,

we used the MACCS fingerprints; similar metrics were observed using other types of fin-

gerprints. The existing models trained on the SMILES generally perform better than
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the models trained using only fingerprints; CNN-RNN and RNN perform significantly

better than the FC model. We conjecture the difference in performance results from the

difference in feature representation using SMILES and fingerprints. Since fingerprints

are generated from SMILES, fingerprints are supposed to contain less information. We

experimented using both LSTM and GRU for building the models composed of RNNs;

for the CNN-RNN*FC, LSTM performs better than GRU while GRU performs best for

CNN-RNN. Our results illustrate that the three mixed networks perform comparatively

better than the existing candidate model architectures; the CNN*FC model performing

significantly better. The CNN branch of CNN*FC model is composed of an embedding

layer of length 32 followed by two 1-D convolutional layers with 32 filters with a kernel size

of 3 (same padding and ReLU as the activation function). The FC branch is composed

of four fully connected layers with 1024, 512, 256 and 64 units respectively. The final

network that learns on the mixed intermediate features is composed of two layers with

64 and 1 outputs respectively. Since we perform an architecture search for each network

independent of other networks, the architecture configuration for the mixed networks are

different from the individual networks that leverage one input representation; hence, this

is different from the current model ensemble approach where the outputs from different

trained networks are aggregated to predict the output.

The derivation of fingerprints from SMILES involves simple logic and computation.

However, we find that the mixing of intermediate features learned using the two network

branches from the two molecular representations trained resulted in a significant gain in

performance. It demonstrates the effectiveness of CheMixNet architectures in learning

from multiple types of feature representations for better performance.
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Figure 2.2. Comparison of the training error curves and mean absolute per-
centage error on the test set for different DNN architectures on the CEP
dataset. The ’-’ sign indicates when the networks are trained in sequence
and ’*’ when two parallel multi-input networks (one with SMILES as in-
put and the other with fingerprints as input) are concatenated. In these
experiments, we use MACCS fingerprints - however, metrics from other fin-
gerprints were similar. Our results demonstrate that the CNN*FC model
performs the best. The three mixed networks perform comparatively better
than the other state-of-the-art models. Since we use ConvGraph module
from deepchem repository out of the box which does not give any informa-
tion about convergence while Chemception usually takes about 100 epochs
to converge, the training curve for Chemception and ConvGraph is not
shown.

2.5.2.2. Performance on MoleculeNet Datasets. We further analyzed the effec-

tiveness of using mixed networks in learning from multiple inputs by evaluating on five

datasets from the MoleculeNet benchmark. Two of these datasets involves classification

tasks while the rest involves regression tasks. Figures 2.3 and 2.4 illustrate the perfor-

mance results of different types of model architectures on these datasets. For the two

classification tasks (Figure 2.3), we observe that CNN*FC performs better than all other

models. The other two mixed models CNN-RNN*FC and RNN*FC perform better than

the existing models except for the FC model. FC model performs better than all other

existing models on the classification tasks from the HIV and Tox21 datasets.
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Figure 2.3. Performance of CheMixNet classification models against con-
temporary DNN models for the HIV and Tox21 datasets from MoleculeNet
benchmark. CheMixNet architectures outperform the existing state-of-the-
art models on both datasets. For classification tasks, higher AUC is better.

For the regression problems(Figure 2.4), we observe similar patterns- one of the mixed

networks performing the best among all the networks. For the two FreeSolv datasets,

CNN-RNN*FC performs the best; there is no one single best model among the existing

network that works best for both these datasets. For the ESOL dataset, RNN*FC per-

forms the best among all models; CNN model performing slightly worse. In general, we

always observe benefit in performance from using mixed networks which can learn from

both inputs- SMILES, and fingerprints. Since fingerprints are derived from SMILES, we

conjecture the gain in performance not only comes from multiple inputs but also and more

importantly from the use of different types of networks for different input representations.

2.6. Summarization

In this chapter, we present CheMixNet, the first mixed deep neural network that lever-

ages both chemical text (SMILES) as well as molecular descriptors (MACCS fingerprints)

for predicting chemical properties. Compared to existing DL models trained on single

molecular representations, the proposed CheMixNet architectures perform significantly

better on all the six datasets used in our study.
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Figure 2.4. Performance of CheMixNet regression models against contem-
porary DNN models for the FreeSolv (calculated and experimental) and
ESOL datasets from MoleculeNet benchmark. CheMixNet architectures
outperform the existing state-of-the-art models on the three datasets. For
regression tasks, lower MAPE is better.

The results provide proof of concept of the efficacy of using mixed input architectures

for chemical property prediction. We demonstrate that by using a mixed deep learning

approach, we can leverage the features of both sequence and fingerprint representations

and achieve much better results, even with only a few hundred training samples. For a

machine learning practitioner or researcher, the success of CheMixNet framework suggest

that if several representations of data is available, an architecture that utilizes all or some

of these representations is recommended.

Further, the results demonstrate that CheMixNet architectures can be generalized

over a different range of chemical properties independent of the type of supervised learn-

ing tasks (classification or regression) and the type and size of datasets. The range

of chemical properties predicted in our study is relevant across solar cell technology,

pharmaceuticals, biotechnology, and consumer products. The CheMixNet architectures,

as well as the benchmark models, are made accessible for the research community at

https://github.com/paularindam/CheMixNet [34].
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CHAPTER 3

Donor Property Prediction of Organic Solar Cells Using

Extremely Randomized Trees

3.1. Introduction

Solar energy is a vital source of clean, versatile renewable energy and an important

component in solving the worldwide energy problem [71]. Organic Photovoltaic cells

(OPVs) [55–58] are lightweight, flexible, inexpensive and more customizable compared

to traditional silicon-based photovoltaics [59]. However, there are challenges impeding

the usage of OPVs in a commercial environment. The major issue surrounding OPVs is

low power conversion efficiency of fabricated cells. Maximum cell efficiency observed in

organic solar cells is currently 13.2% [72], and commercial devices usually achieve around

5-8% [73], which is much lower than silicon-based photovoltaics. The primary bottleneck

in the improvement of OPV device design is complex manufacturing processes that lead

to the reduction of active layer performance [74]. Traditionally, the design of a potential

OPV material is dependent on conjectures from experiments, and expertise of materials

scientists, followed by a laborious process of synthesis, characterization, and optimization

of a prototype device.

The screening of OPV materials could be semi-automated through utilization of vari-

ous modeling techniques (finite element [75, 76] to ab initio [77, 78] and molecular model-

ing [79]). Yosipof et al. [80] establishes the importance of data reduction and visualization
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using Principle Component Analysis and Self Organizing Maps, wherein two metal oxide

solar cell libraries are analyzed. Jorgensen et al. [81] describes deep generative models

for predicting molecular properties, and in particular, delineates screening of OPV using

molecule generation via context-free grammar VAE. Kaspi et al [82] introduces a ma-

chine learning/data mining-based decision support system PVAnalyzer for identification

of interesting trends not easily observable using simple biparametric correlations, and

provides scope of finding new insights into factors affecting solar cells performances. The

task of screening is complicated due to the difficulty in capturing complex effects cul-

minating from multiple local minimum configurations a polymer could adopt during the

manufacturing of the active layer [83–86].

Machine learning applied to available experimental observations and theoretical simu-

lations could potentially generate many comprehensive models with advanced predictive

capabilities. This approach has been successfully applied in several materials and molec-

ular designs [87–99] across application areas.

In this chapter, machine learning models developed using extremely randomized trees

(ERTs) [100] to advance the organic monomer screening process for photovoltaic applica-

tions [101, 102] are presented. The results of ab initio simulations were combined with the

cataloged description of the structural details of the monomers. The variance of struc-

tural morphology in the actual device was approximated with sets of local conformers

that possibly could be created during manufacturing. Models developed in this work

predict highest occupied molecular orbital (HOMO) energy of the donor monomers in

the active layer of the device that is averaged across multiple configurations using Boltz-

mann averaging. The predicted value paired with the complementary lowest unoccupied
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molecular orbital of the acceptor molecule could be used in speeding up the screening pro-

cess. The proposed models outperform neural networks trained on molecular fingerprints

as well as SMILES [44, 103, 104], as well as other state-of-the-art architectures such as

Chemception and Molecular Graph Convolutions on both the smaller Harvard Organic

Photovoltaic (HOPV) dataset as well as on a subset of the Clean Energy Project (CEP)

dataset. For end-user convenience, the machine learning models were implemented as a

web application at http://info.eecs.northwestern.edu/OPVPredictor.

3.2. Background

3.2.1. Organic Photovoltaic Cells

Among current solar cell design paradigms, organic photovoltaic cell technology is a

promising technology for the inexpensive and versatile utilization of solar energy. The tra-

ditional development of new OPV materials is predominantly based on empirical intuition

or experience of materials scientists. A new design idea is followed by a labor-intensive

synthesis, characterization, and prototype device optimization. Hence, the problem space

of OPV renewable energy research is notably complicated as the design of successful OPV

materials is a multifaceted problem. The conversion of sunlight into electricity can be

achieved using a solar cell and is one of the most attractive future sources of energy. Ever

since the development of the first solar cells, there has been an accelerated and compre-

hensive exploration for cost-effective photovoltaics. OPVs are potential cost-effective and

lightweight alternatives to silicon-based solar cells and could lead to the most substantial

reduction of production cost. After being excited with light, firmly bound electron-hole

pairs (excitons) are generated. As illustrated in Figure 3.1, an OPV works by absorbing

http://info.eecs.northwestern.edu/OPVPredictor
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a photon emitted by the sun. The photon carries energy that is used to excite an electron

off a donor layer, often comprised of a semiconducting polymer.

However, for the solar cell to generate electricity, the electron and hole must be sepa-

rated and subsequently collected at electrodes of opposite polarity. In order to accomplish

this, the exciton bond must be broken. This happens at the donor-acceptor interface,

where the exciton splits into separate free electron and hole. As the charges separate

further, they can reach electrodes which upon becoming charged, generate electricity as

the electrons move from the cathode to the anode.

Figure 3.1. Photo-electricity generation in a bulk heterojunction Organic
photovoltaic cell [3]. When the photons from the sun hit the surface of the
OPV device, an electron from the donor is excited and combines with the
corresponding hole at the acceptor layer to form an exciton. Electricity is
generated when the exciton splits at the interface, and electrons move from
the cathode to the anode.

OPVs have the advantage of combining the versatility and flexibility of plastics with

photo-electronics. They can be made semi-transparent, and moldable into different forms

and shapes. Researchers have even tried spray-coating OPVs on various surfaces [59].
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Nonetheless, production scale small-area devices yield efficiency of only about 5% [73],

with laboratory experiments yielding the highest efficiency of around 10%, and hence

there is much room for improvement. Several models predict the efficiencies to reach

15% assuming the usage of state of the art materials and device architectures [105]. The

conventional process for the generation of such devices is iterative and time-consuming.

However, due to the labor-intensive process of generating candidates for OPVs, producing

virtual screening techniques as elucidated by Pyzer-Knapp et al. [14] and our current study

can potentially fasten the process considerably.

3.2.2. Scharber Model

For a solar cell, the most important property is power conversion efficiency (PCE) or the

amount of electricity which can be generated due to the interaction of electron donors

and acceptors. The Scharber model [60] provides a relation between the voltage Voc and

the energies of the HOMO and the lowest unoccupied molecular orbital (LUMO) level

of the donor and acceptor molecules respectively, which in turn can be related to the

power conversion efficiency (PCE), the maximum efficiency of solar cells. In the following

equation, Jsc is the short-circuit current density, FF is electrical fill factor and Pin is

incident-light intensity. EDonor
HOMO and EAcceptor

LUMO indicate the HOMO and LUMO energy

levels of the donor and acceptor molecules respectively.

Voc = 1/e(|EDonor|
HOMO − E

|Acceptor|)LUMO − 0.3V

PCE = 100 ∗ (Voc ∗ FF ∗ Jsc)/Pin
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3.3. Method

3.3.1. Extremely Randomized Trees

𝜇

Figure 3.2. Extremely randomized trees (ERT) architecture : ERTs are a
forest of decision trees where node split is selected randomly with respect to
both variable index as well as variable splitting value. Results from several
small trees (indicated in dashed boxes) are aggregated in ERTs. The black
paths represent the decision tree path for a given data point, and the gray
paths represent the decision tree paths that are not selected. The output
of each individual tree is aggregated and the final predicted value is the
arithmetic mean (indicated by µ).

ERTs use an ensemble of decision trees [100] in which a node split is selected completely

randomly with respect to both variable index and variable splitting value. The principle

behind ERTs is using several small decision trees that are individually weak learners but

when aggregated in an ensemble leads to a very robust learner. ERTs are similar to other

tree based ensemble algorithms such as random forests (RFs) but unlike RFs, the same

training set is used for training all the trees. Further, ERTs split a node based on both

variable index and variable splitting value while random forests only splits by variable
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value. This makes ERTs both more computationally efficient than RFs and generalizable.

Figure 3.2 illustrates the working of ERTs by aggregating results from several smaller

trees.

One of the reasons for choosing a tree-based ensemble approach is that it is possible

to develop an effective model even on a very small dataset. For other algorithms such

as neural networks, there are many more parameters to learn and therefore, it requires a

higher amount of data. Furthermore, decision-tree based methods rank the top features

that allows us to interpret the impact of these features on the output attribute. In other

algorithms employing neural networks, it is difficult to draw connection of the output

attribute with the original features. One of the motivations of this work is to develop an

interpretable model that can be used by molecular scientists.

To evaluate the validity of ERTs to scale to other datasets, we experimented on a

subset of the Harvard CEP Dataset [14] which contains DFT-calculated molecular struc-

tures and properties for many candidate donor structures for organic photovoltaic cells.

The CEP is a virtual high-throughput discovery and design effort for the next generation

of plastic solar cell materials. It studies many candidate structures to identify suitable

compounds for the harvesting of renewable energy from the sun and for other organic

electronic applications. To establish the generalization of the models for larger datasets,

we scraped a portion of the CEP database available. For scraping, we used the python

libraries selenium [106] and beautiful soup [107]. This dataset is made available in the

supplementary material. We restricted our extraction to 22,179 data points as the online

CEP database had restrictions in place preventing automatic web-extraction of the entire

database.
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3.3.2. Datasets

The HOPV dataset [108] used in this work is a collection of photovoltaic measurements

for a diverse set of 350 organic donor compounds generated by extensively searching the

literature. In our experiments, the dataset was reduced to 344 molecules after removing

redundant isomeric samples [109]. The dataset provides density functional theory (DFT)

calculations of HOMO energy values for four functionals B3LYP, BP86, PBE and M06

using the basis set def2-SVP [110]. We get the expected values for HOMO values across

all conformers by calculating the boltzmann average. Each molecule in the HOPV dataset

is represented by a subset of 3-18 conformers obtained at kT , where k is the Boltzmann

constant and T is the temperature of the OPV device. The global minimum (T = 0K)

structures used for prediction of HOMO energies are far from the donor molecule struc-

tures in real OPV devices, after various manufacturing steps. We observe from Figure 3.3

that the PCE of the OPV device and the HOMO energy values are correlated with each

other. We abstained from building models on the experimental values as HOMO values

were missing for many molecules, and manufacturing information was not provided.

The band gap of the processed organic layer (made up of donors, acceptors, and other

additives) would be altered from their global minimum value due to the shift of molecules

from their ideal configuration. The degree of alteration would depend on the exact routine

used in manufacturing, and is hard to predict. The boltzmann averaging is an attempt to

account for the effect of structural variation in the experimental device. This is because

different conformers of the same molecule occur in real OPV devices, and hence HOMO

energies averaged over all conformers into the predictive model is expected to improve the

relevance of the predicted HOMO values to the performance of the actual device.
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Figure 3.3. The scatter-plot (with line of best fit) demonstrates the linear
relationship between PCE of the device and HOMO values of the donor
compound. The boltzmann average of the HOMO values for each conformer
is used to determine the HOMO for a given donor.

(a) (b) (c)

Figure 3.4. Distribution of the datasets : (a) entire HOPV dataset, (b)
training set, and (c) held-out test set. All the HOMO values are in atomic
units (a.u.). 1 atomic unit is equal to 27.21 eV.

3.3.3. Data Mining

For both the datasets, the original data was divided into training and test subsets. Fig-

ure 3.4 illustrates the distribution of the HOMO values across the complete HOPV dataset,

the training and test sets. The dataset is split into training and test subsets with 80%

and 20% of the data points respectively. We use stratified shuffle splitting to ensure

similar distribution across the training and test set. The HOPV dataset provided DFT

calculations for 4 functionals : PBE, B3LYP, BP86 and M06. In this work, we restricted
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ourselves to PBE calculations. Further, we found that all the other functionals can be

expressed as a linear transformation of the PBE functional values.

Two fingerprint representations - MACCS and Atom Pair were used for generating fea-

tures [111–116]. For Atom Pair fingerprints, we initially calculated the original unhashed

count vector of length 4 million for all the molecules using RDKit. After that, features

that are invariant across the entire dataset were removed. This led to the reduction of the

length of the unfolded fingerprint from 4 million to 2696 . The uncompressed MACCS

fingerprint was only 166 bits long, and hence no feature reduction or transformation was

performed. We did not use 1024 bit compressed fingerprint representation for Atom Pair

as the original meaning of the fingerprint would be lost.

The fingerprints were prepared from their simplified molecular-input line-entry system

(SMILES) [117] formulae using RDKit Python Library [118]. SMILES is a form of line

notation for the chemical structure of molecules, and considered a versatile system. Mol-

ecule editors can generate 2D and 3D models from the line notation. The HOPV dataset

provides canonical Standard SMILES implementations both in standard and shortened

format.

Extensive grid search was performed across hyper-parameters to discover the model

architecture with the least mean absolute error for 5-fold cross-validation. This model

was chosen and trained on the entire training dataset.
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(a) (b)

Figure 3.5. Learning curves for the cross-validated ERT models across
different set of training examples for the MACCS and Atom Pair
Fingerprints. The goodness of prediction (Q2) is used as the score.

3.4. Results & Discussion

3.4.1. Experimental Results

In this work, we provide a framework for reducing the design space by screening new

donor candidates using machine learning models developed on the HOPV dataset. Al-

though both donors and acceptors are essential for an OPV application, the current work

is restricted to donors as there are only a small number of known acceptors [119, 120]

compared to hundreds of thousands of potential donor molecules. Therefore, develop-

ing a machine learning-based screening solution for donor molecules would lead to the

identification of OPV devices with high PCE.

Figure 3.5 demonstrates the learning curve of the cross-validated ERT models across

different set of training examples. The learning curves help demonstrate the increase of

the learning capacity of the model as the dataset is increased. Further, the variance of the

cross-validated models (indicated by the shaded green band surrounding the corresponding

curve) decreases as the number of training examples increase.
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Table 3.1. Comparison of performance of ERT models with other algo-
rithms for the HOPV dataset

Algorithm Feature % MAE RMSE Q2

AdaBoost Molecular Fingerprint (MACCS) 2.6443 0.0061 0.1670
AdaBoost Molecular Fingerprint (AtomPair) 2.5395 0.0058 0.2269
XGBoost Molecular Fingerprint (MACCS) 2.0472 0.0057 0.7277
XGBoost Molecular Fingerprint (AtomPair) 2.0141 0.0057 0.7263
Bagging Molecular Fingerprint (MACCS) 2.6162 0.0063 0.1098
Bagging Molecular Fingerprint (AtomPair) 2.4500 0.0058 0.2503
Random Forest Molecular Fingerprint (MACCS) 2.0977 0.0054 0.4982
Random Forest Molecular Fingerprint (AtomPair) 2.0589 0.0053 0.5169
ERTs Molecular Fingerprint (MACCS) 1.9703 0.0057 0.7390
ERTs Molecular Fingerprint (AtomPair) 1.9100 0.0056 0.7427
FC Molecular Fingerprint (MACCS) 3.6850 0.0084 -0.5906
FC Molecular Fingerprint (AtomPair) 3.5135 0.0078 -0.3975
CNN SMILES 3.2536 0.0072 -0.1885
RNN SMILES 2.6240 0.0062 0.1200
CNN-RNN SMILES 2.6443 0.0061 0.1670
ConvGraph Molecular Graphs 2.8170 0.0079 0.1082
Chemception Molecule Image 3.2738 0.0079 -0.4089

To compare their performance, we also trained other state-of-the-art architectures for

all datasets used. This includes a fully connected (FC) network trained on the finger-

print representations. Further, we also compare against 1-D CNN, RNN and CNN-RNN

architectures trained on SMILES as recent papers have demonstrated their superiority

over FC methods [44, 103, 104]. Lastly, we compare against other state of the art neural

networks used in molecular informatics such as ConvGraph and Chemception. While the

ConvGraph architecture uses the molecular structure encoded as graphs as input and

then performs graph convolutions, Chemception architecture [33], based on the Inception

architecture for image classification [121], directly develops a very deep neural network

model by training directly on images of molecules. Bagging, RandomForest, ERTs and

AdaBoost algorithms were implemented using Scikit-Learn Python Library [122]. The
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Table 3.2. Performance metrics of the randomization tests performed using
the MACCS and AtomPair fingerprints as features

Features Model % MAE RMSE Q2

MACCS y-Randomization 4.6036 0.0117 -2.1476
Pseudo-Descriptors 6.5617 0.0167 -5.3666

Atom Pair y-Randomization 3.3981 0.0083 -0.5600
Pseudo-Descriptors 5.5822 0.0147 -3.9450

XGBoost package [123] was utilized for creating the xgboost model. The FC, CNN,

RNN, CNN-RNN and Chemception models were implemented using Keras [61] with Ten-

sorflow [62] backend. The ConvGraph was implemented using DeepChem library [65].

In Table 5.1, we present the results of the experiments across all the models for the

HOPV dataset. We present the % Mean Absolute Error (MAE), Root Mean Squarer Error

(RMSE) and goodness of prediction (Q2). We can observe the superiority of ERTs for both

the MACCS and Atom Pair fingerprints over the other models. ERTs trained on MACCS

and Atom Pair had a mean absolute percentage error (% MAE) of 1.91% and 1.97%.

The RNN, CNN and CNN-RNNs trained on the SMILES had % MAE between 2.62%

and 3.25%. Convolutional Graphs had % MAE of 2.82 % and all other methods based

on deep neural networks had even higher % MAE. Two ensemble tree based algorithms

XGBoost and Random Forest outperform all other methods except ERTs. Even other

ensemble tree-based algorithms such as AdaBoost and Bagging perform relatively well and

at par with the best neural network based methods (RNNs and CNN-RNNs). It must be

noted that although ERT models outperform RF models based on % MAE (lower %MAE)

and Q2 (much higher Q2), RF models have slightly lower RMSE.

In Table 3.2, the results of the randomization tests such as y-Randomization and

pseudo-Descriptor tests are delineated. y-Randomization (also known as y-scrambling
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or response randomization) is a form of a permutation test, where the values of the

response variable are randomly ascribed to different compounds, while the descriptors

values are left intact. In the pseudo-descriptors test, the descriptors are replaced by

random numbers that are also subsequently used to train the models. In our case as

the features in fingerprints are bit vectors, we generate random bit strings for features.

A comparison across the performance metrics such as % MAE, RMSE and Q2 of the

ERT models between the original dataset (in Table 5.1) and the randomization tests (in

Table 3.2) demonstrates that our proposed models perform much better than models

based on random input features (pseudo-Descriptors) or labels (y-Randomization).

3.4.2. Correlation of fingerprint features

We wanted to explore the correlation between the most important features for our model

for understanding their impact on the HOMO value. Figure 3.6 depicts the correlation

matrices for top 5 features important for MACCS and Atom Pair Fingerprints, as they

perform best across all the fingerprints. We restricted to top 5 features as the contribution

of other features was very close to 0. The length of MACCS fingerprints is 166, which

is much shorter compared to other fingerprints, and is least affected by the curse of

dimensionality. The correlation plots demonstrate that presence of any ring (Feature 0),

presence of a C=C double bond (Feature 3) and presence of an aromatic ring (Feature

4) is positively correlated with HOMO value, whereas a C≡N triple bond (Feature 1)

and a N=O double bond (Feature 2) is negatively correlated with HOMO value. Further,

the correlation plot illustrates that presence of any ring, the presence of C=C bond and

presence of an aromatic ring are strongly positively correlated with each other and hence
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Figure 3.6. Correlation across the top 5 features and HOMO for MACCS
and AtomPair fingerprints
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Figure 3.7. Specimen donor molecules with the highest HOMO
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Figure 3.8. Specimen donor molecules with the lowest HOMO

we can conclude that these features often co-occur together in compounds with high

HOMO value. Similarly, C≡N triple bond and N=O double bond have a weak positive

correlation with each other, and their co-occurrence together leads to a compound with

low HOMO value.
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Figure 3.9. Best predicted structures based on prediction by both
MACCS and Atom Pair Fingerprints
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Figure 3.10. Worst Predicted Structures based on prediction by both
MACCS and Atom Pair Fingerprints

Figure 3.7 depicts two compounds with the highest HOMO value, and the abundance

of rings including aromatic rings correspond to our observation from the correlation plots.

Figure 3.8 illustrates two compounds from the HOPV dataset with the lowest HOMO

value, and the presence and abundance of C≡N triple bond and N=O double bond are

per our expectation based on correlation values. Although all compounds in the HOPV

dataset had aromatic rings as the fingerprints are count vectors and not bit vectors, it

demonstrates that the number of rings positively correlate to higher HOMO value rather

than the presence or absence of rings.

Figure 3.9 depicts the best-predicted structures from the dataset with respect to pre-

dictions based on both atom pair and MACCS fingerprints. All the compounds that are
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Figure 3.11. Distribution of the CEP subset. All the HOMO values are in
atomic units (a.u.). 1 atomic unit is equal to 27.21 eV.

predicted well have many aromatic rings, in agreement to our models as the number of

rings and the number of aromatic rings are essential features. On the contrary in Fig-

ure 3.10, the compounds have fewer aromatic rings, and also have many features that are

not part of the important features in the extremely randomized tree model. This makes it

difficult to accurately predict the HOMO value. Although in this work, the predicted fea-

ture is HOMO and not PCE, the demonstrated dependence of HOMO and PCE (via the

Scharber model as well as illustrated in Figure 3.3 implies that PCE values are correlated

directly to HOMO.

3.4.3. Generalization on Larger Dataset

We explored ERTs on the larger dataset of 22,179 molecules extracted from the Harvard

CEP Database. We present the distribution of the HOMO values of the larger dataset

in Figure 3.11. The reported HOMO values in the CEP dataset are an aggregate across

several functionals. Table 3.3 compares the performance of the ERT models with other

algorithms. As this dataset is much larger compared to the 350 molecule HOPV dataset,

some deep neural methods such as convolutional graphs expectedly perform comparable
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Table 3.3. Comparison of extremely randomized tree models with other
algorithms for the 22,179 molecule CEP dataset

Algorithm Feature % MAE RMSE Q2

AdaBoost MACCS 2.0349 0.1284 0.7210
AdaBoost AtomPair 2.0170 0.1272 0.7261
XGBoost MACCS 0.9430 0.0611 0.9558
XGBoost AtomPair 0.9378 0.0622 0.9523
Bagging MACCS 1.6434 0.107 0.8065
Bagging AtomPair 1.6418 0.1076 0.8551
Random Forest MACCS 1.4331 0.0946 0.8864
Random Forest AtomPair 1.4654 0.0967 0.8819
ERTs MACCS 0.8991 0.0598 0.9572
ERTs AtomPair 0.8696 0.0584 0.9604
FC MACCS 1.6444 0.1070 0.8065
FC AtomPair 1.6226 0.1058 0.8107
CNN SMILES 0.7804 0.0521 0.9673
RNN SMILES 0.7815 0.0527 0.9663
CNN-RNN SMILES 0.7786 0.0529 0.9667
ConvGraph Molecular Graphs 0.9104 0.0519 0.9619
Chemception Molecule Image 1.4681 0.0974 0.8762

to the ERTs, and SMILES-based models slightly outperform the ERT models. As the

dataset is larger, we increased the number of trees in our model to 200.

Although the Scharber model is simplistic to account for all the complex physics of

an OPV explicitly, it nonetheless provides a valuable indication of the inherent promise

of a candidate compound. Further, as the HOPV dataset was small, the web application

must be used with caution. Due to the low mean absolute percentage error (% MAE), it

will have high precision for compounds that are similar to those in the HOPV dataset.

For instance, the HOPV dataset has only 3 compounds that have Selenium in the donor

molecule.
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3.5. Summarization

A methodology for predicting properties using fingerprints of donor molecules is pre-

sented. The elegance of an ensemble based regression technique such as ERTs lies in

the fact that it minimizes the need for feature reduction or normalization. In particular,

ERTs are generalizable and less prone to overfitting which is essential while learning from

a small dataset. Further, ERTs are easily interpretable - a desired trait for further un-

derstanding of which features are most important for the predicted property of a given

monomer. One of the goals of machine learning models is reusability. In the proposed

work, although the models were trained using the PBE functional values, we ascertained

that HOMO values of other functionals namely B3LYP, BP86, and M06 could be ex-

pressed as a linear transformation of their corresponding values for B3LYP functionals.

Hence, the models developed for PBE can be extended to predict for other functionals.

For the smaller OPV dataset, ERT models achieve better performance than other meth-

ods -both tree-based as well as those based on neural network. Further, we evaluated

ERTs on the larger dataset and it performed almost at par with CNN or RNN-based

neural networks trained on SMILES. We also provide a web application where users can

receive the predicted HOMO values for the chemical compound of the donor as well as

Voc of the donor-acceptor combination for a given acceptor.

This work reveals the potential of integration of feature manipulation combined with

extensive grid search on a small experiment-theory calibrated dataset of organic photo-

voltaic donors. Our system allows researchers to get an estimate of the HOMO energy

values of donor compounds used in OPV applications, and motivate the development of

an inexpensive photovoltaic solution.
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CHAPTER 4

Transfer Learning Using Ensemble Neural Networks for Organic

Photo-voltaic Applications

4.1. Introduction

Based on current statistics, energy consumption had increased from 238 Exajoules (EJ)

in 1972 to 464 EJ in 2004. A further 65% increase is projected by the year 2030 [124].

Sustained usage of fossil fuels leads to irreversible changes to the planet with sea level

rising from 1.7 to 3.2 mm per year and ocean temperatures increasing [124, 125]. It is im-

perative to search for versatile and cost-efficient clean energy solutions to prevent further

irreversible damage. One limitation with renewable energy is that it is difficult to generate

the quantities of electricity that are as large as those produced by traditional fossil-fuel

generators [126]. Wind and hydro-energy solutions require expensive installations [127]

and maintenance, which requires large government grants, and are dependent on weather

and climate conditions [128]. Moreover, most renewable energy technology is new and has

enormous capital costs compared to traditional fossil fuels. Solar energy provides a more

cost-effective solution with faster installation, and more predictive energy outputs based

on the Bureau of Meteorology and National Aeronautics and Space (NASA) reports [129].

Although inorganic silicon-based solar energy systems are currently more conventional,

organic or plastic photovoltaic (OPV) [130] technology has become very popular because

of its flexibility. Organic or Plastic Technology is very versatile as demonstrated by how
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plastics in consumer goods can be made very hard and durable, or very light or transpar-

ent as dictated by needs [131]. Further, manufacturing costs are lower for organic solar

cells compared to silicon-based materials due to the ease of device manufacturing, and

lower cost of organic components compared to silicon [132].

However, the main bottleneck in the deployment of organic solar cells is that the search

for candidate chemical compounds for creating organic solar cells is very time consum-

ing [133]; it can take up to thousands of hours of laboratory analysis. For a solar cell,

the most important property is power conversion efficiency (PCE) or the percentage of

electricity which can be generated due to the interaction of electron donors and acceptors

after absorption of energy from the sun. The PCE is dependent on the highest occupied

molecular orbital (HOMO) energy of the donor and the lowest unoccupied molecular or-

bital (LUMO) energy of the acceptor molecule [60]. However, as the LUMO values across

known acceptors do not vary much, and only a few acceptor molecules exist, predicting

HOMO values of donor molecules can give us estimates of PCE when those donors are

used in solar cells.

There are two main issues with the current practice of building predictive models

using machine learning (ML) techniques. First, these predictive models are built using a

single representation of the molecular structure - line notations [36] such as SMILES or

InChI, molecular fingerprints [14] or molecular graphs [32]. Line notations are increasingly

becoming popular for use in ML models as molecular fingerprints are difficult to interpret

and models trained on molecular graphs usually perform worse [44]. However, these

approaches have restricted themselves to only one type of line notation – either SMILES

or InChI as input representations for predictive models. This limits the information that
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can be harnessed from these representations as SMILES and InChI express the molecular

structure in very different ways. SMILES defines the chemical bond types present in

the molecular structure from which one can infer the protonation while InChI serves the

opposite purpose- it defines the protonation from which one can infer the chemical bond

types present in the molecular structure. Also, SMILES was designed to be read and

written by humans whereas InChi was intended to ignore tautomeric form and be more

consistent. Since the two line representations are distinct in their properties, a predictive

model can benefit from the use of both of them. Second, most of the datasets, especially,

experimental datasets are limited in size. Hence, current ML models are either built using

publicly available large DFT-computed datasets such as the Harvard CEP dataset [14, 54]

or other limited experimental or DFT-computed datasets which are relatively smaller in

size and hence, the model cannot learn the required data representation for making robust

predictions. In this work, our goal is to leverage together larger DFT-computed datasets

with relatively smaller datasets such as experimental observations and combine both types

of line representations- SMILES and InChI – to build more robust predictive models for

predicting HOMO values for donor candidates for OPV.

We present an ensemble deep neural network architecture, called SINet, which lever-

ages both the SMILES and InChI molecular representations to learn to predict the HOMO

values, and leverage transfer learning from large datasets to build more robust predictive

models for a relatively smaller dataset. SINet is composed of two identical branches for

both types of inputs; each branch consists of 1-D CNN layers followed by LSTM lay-

ers. The features learned by the two branches from the two input representations are

combined and fed into a fully connected network for predicting the regression output
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of HOMO value. The deep neural network architecture of SINet enables us to perform

transfer learning from a large dataset to relatively smaller dataset in a similar domain.

Transfer learning has already been adopted in the fields of computer vision, natural lan-

guage processing and other application domains [134, 135].

Our source dataset for transfer learning is the Harvard CEP dataset [14, 54] which

contains molecular structures and properties for 2.3 million candidate donor structures for

OPV. For the target dataset, we leverage DFT-computed and experimental values of 350

and 243 molecules respectively, from the HOPV [108]. Our results demonstrate significant

performance improvement from the use of both types of inputs- the MAPE drops from

0.972% and 0.457% using SMILES and InChI respectively, to 0.213% when using them

together using the SINet architecture. We also find significant benefit from using transfer

learning from Harvard CEP to the HOPV datasets. The MAPE for experimental and

DFT-computed datasets from HOPV drops from 2.782% to 1.513% and 2.118% to 1.478%,

respectively. Since the model is first trained on a large dataset, it learns the required set

of features from the input data representation, and this helps in learning the similar

features present in the smaller target dataset, on which the model is fine-tuned. Our

results demonstrate significant benefit from the use of both types of input representations

as well as from transfer learning from a larger dataset. It showcases that leveraging

machine learning with computational and experimental chemistry can play an essential

role in the expedition of a systematic design of high-efficiency OPV materials, and holds

significant promise as a potential solution to future energy needs.
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4.2. Method

In this section, we discuss the InChI representation, present the source and target

organic photovoltaic datasets used in our experiments, discuss the preprocessing of the

SMILES and InChI strings and propound our methodology.

4.2.1. InChI

The IUPAC International Chemical Identifier (InChI) [136] was developed by IUPAC

and NIST (National Institute of Standards and Technology). It is a textual identifier

for chemical substances which provides a standard way to encode molecular information.

Every InChI string starts with the string “InChI=” followed by the version number and

letter S in the case of standardized InChIs. Rest of the InChI string is structured as

a sequence of layers and sub-layers. Each layer provides a specific type of information,

and are separated by “/”. The InChI algorithm transforms the structural information

of the molecule into a unique InChI identifier in a three-step process. The first step is

normalization which removes redundant information. This is followed by canonicalization

that generates a unique number label for each atom. The last step is serialization that

produces a string of characters.

SMILES and InChI are distinct notations. SMILES defines the bond types from

which one can infer protonation, while InChI defines protonation from which one can

infer the bond types. SMILES was designed to be read and written by humans and is

therefore relatively straightforward to read, provided the user knows a few basic principles

of the format. InChI, is comparatively less readable, is intended to ignore tautomeric
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Table 4.1. Examples of set of similar chemical compounds with their cor-
responding SMILES and InChI notations with explanation

Compound 1 Compound 2 Line Notations (with explanation)

Ethanol Dimethyl Ether

• SMILES: CCO and COC
• InChI: InChI=1S/C2H6O/c1-2-

3/h3H,2H2,1H3 and InChI=1S/C2H6O/c1-3-
2/h1-2H3
• “C2H6O” means that the first and second

atoms (1 and 2) are C atoms and the third
(3) is an O atom. The connectivity is 1-2-3
for ethanol and 1-3-2 for dimethyl ether. For
ethanol atom 3 has 1 H atom, atom 2 has 2 H
atoms, and atom 1 has 3 H atoms. For dimethyl
ether atom 1-2 have 3 H atoms, while atom 3
has none.

Ethylamine Ethylammonium

• SMILES: CCN and CC[NH3+]
• InChI=1S/C2H7N/c1-2-3/h2-3H2,1H3 and

InChI=1S/C2H7N/c1-2-3/h2-3H2,1H3/p+1
• For the InChI notation, the protonation (h2-

3H2,1H3) is identical in both cases an cor-
responds to ethylamine. For ethylammonium
”p+1” indicates that an extra proton is added.

Benzene Toluene

• SMILES: c1ccccc1 and Cc1ccccc1
• InChI=1S/C6H6/c1-2-4-6-5-3-1/h1-6H and

InChI=1S/C7H8/c1-7-5-3-2-4-6-7/h2-6H,1H3
• For the SMILES notation, in the case of ben-

zene atom 1 is connected to both atom 2 and
atom 6, i.e. a ring is formed. ”1” is a label and
does not refer to atom number 1 (see toluene).
A lower case ”c” is used to indicate aromatic
carbons, meaning they should be singly proto-
nated. For toluene, the methyl group is bonded
to atom number 2, which is also bonded to atom
number 7. For the InChI notation, in the case
of benzene aromaticity is inferred from the fact
that all 6 carbon has 1 H atom (h1-6H). For
toluene, the methyl group is bonded to atom
number 7, which is also bonded to atom num-
ber 6.

form and is consistent. Table 4.1 illustrates the distinction between SMILES and InChI

representations.
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4.2.2. Datasets

The source dataset for transfer learning is the Harvard CEP Dataset [14, 54] which con-

tains molecular structures and properties for 2.3 million candidate donor structures for

organic photovoltaic cells. For a solar cell, the most important property is power conver-

sion efficiency or the amount of electricity which can be generated due to the interaction

of electron donors and acceptors, which are dependent on the HOMO values of the donor

molecules. In this work, we considered the highest occupied molecular orbitals (HOMO)

as the target property as it determines the power conversion efficiency of a solar cell

according to the Scharber model [60].

The target dataset was the Harvard Organic Photovoltaic (HOPV) dataset [108] which

is a collection of photovoltaic measurements for a diverse set of 350 organic molecules gen-

erated by extensively searching the literature. Of these, experimental values were available

for 243 molecules and calculated values using density functional theory (DFT) were avail-

able for 344 molecules. In our experiments, the DFT-computed values in the HOPV

dataset were reduced to 344 molecules after removing redundant isomeric samples [109].

We used both the experimental and calculated datasets as target datasets for transfer

learning. The HOPV dataset contains density functional theory (DFT) calculations for

four functionals B3LYP, BP86, PBE and M06 using the basis set def2-SVP [110]. We used

B3LYP functional values as it is the most popular functional for HOMO value calculations.

Further, HOMO values across all conformers were Boltzmann-weight averaged [137].



72

Merge Layer

Fully Connected MLP

LSTM 

1-D CNN 

C1C=c2c3c([nH]c4ccc5=C[SiH
2]C=c5c34)c3ncc(cc3c2=C1)

C1=CC=C[SiH2]1

SMILES

LSTM 

1-D CNN 

InChI=1S/C24H18N2Si2/c1-3-15-16(4-
1)22-21-18-12-27-11-13(18)6-7-19(21)26-
24(22)23-17(15)9-14(10-25-23)20-5-2-8-

28-20/h2-12,26H,1,27-28H2

InChI

Source Dataset

LSTM 

1-D CNN 

Cc1ccc(-c2c3ccsc3c(-
c3ccc(C)s3)c3cc(-

c4ccc(C5=C6C(=O)N(C)C(c7cccs7)
=C6C(=O)N5C)s4)sc32)s1

SMILES

LSTM 

1-D CNN 

InChI=1S/C36H24N2O2S6/c1-17-7-9-22(43-17)27-
19-13-15-42-33(19)28(23-10-8-18(2)44-23)20-16-

26(46-34(20)27)21-11-12-25(45-21)32-30-
29(35(39)38(32)4)31(37(3)36(30)40)24-6-5-14-41-

24/h5-16H,1-4H3

InChI

Merge Layer

Fully Connected MLP

Target Dataset

Source Learning System Target Learning System 

2 
la

ye
rs

 
2 

la
ye

rs
 

2 
la

ye
rs

 
2 

la
ye

rs
 

2 
la

ye
rs

 
2 

la
ye

rs
 

2 
la

ye
rs

 
2 

la
ye

rs
 Transfer 

Learned 
Knowledge

Figure 4.1. The proposed SINet architecture for learning from the two text-
based molecular representations - SMILES and InChI. The left side (repre-
sented by faded colors) represents the learning from the source dataset while
the right side (represented by darker colors) represents the learning for the
target dataset. For both the learning systems, the red branch represents
the network for sequence modeling from SMILES while the blue branch
represents the network for sequence modeling from InChI. The purple part
represents the fully connected layers that learn the final output from the
combination of features learned by the two network branches. We exemplify
the SMILES and InChI with one representative example in this illustration
from both the source as well as target datasets.

4.2.3. Preprocessing

For both the SMILES and InChI sequences, one-hot encoding was performed separately

to convert them into fixed length representations. The sequence lengths were calculated

using the length of the longest SMILES and InChI sequences in the dataset respectively.

To maintain a uniform sequence size, shorter strings were padded with zeros. Similar to

SMILES2vec, vocabulary size was equal to the number of unique characters. The sequence

lengths are 82 and 162 respectively for SMILES and InChI input representations.
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4.2.4. SINet

Figure 4.1 illustrates the proposed approach for performing transfer learning from the

Harvard CEP dataset to the two smaller target datasets in the HOPV dataset. The

deep neural network architecture used for the task consists of two branches for the two

types of the input representations of SMILES and InChI. The SMILES input vector has a

length of 82 while the InChI input has 162 values. Both branches have the same network

configuration. Each branch is composed of a 1-D CNN followed by an LSTM network.

The 1-D CNN is composed of two layers with 32 filters each; the filter size used in each

layer is 3 and same padding for the inputs and output. The convolutional layers are

followed by max pooling with a pool size of 2. There was no significant difference with

other types of pooling and other pooling sizes. The output of the 1-D CNN is fed into the

LSTM network which is composed of 2 layers having 64 units each. Finally, the outputs

from both branches are concatenated into the merge layer and fed into a fully connected

network which is composed of a penultimate dense layer with 64 units and the final layer

that gives the HOMO value as the regression output. Since the network architecture

leverages both SMILES and InChI molecular representations, we refer to it as SINet.

For transfer learning, first, we train a model on the source dataset of Harvard CEP

from scratch (by initializing the model parameters from scratch before training). While

being trained on the large dataset, the model learns a rich set of feature representations

present in the large training data which is useful for making predictions in the source

domain. Next, for using transfer learning, we can follow one of the two techniques.

Either, the same trained model can be fine-tuned by training on the target dataset, or

we can initialize a new model using the model parameters from the model trained on
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the source data and then fine-tune it on the target data. In this work, we use the first

approach as the target dataset is very small, and we wanted to harness the source dataset

as much as possible. In the case of transfer learning, rather than learning all the feature

representations present in the input data from scratch, the model already knows the input

data distribution from the source dataset and only fine-tunes its parameters to adapt to

the target dataset.

4.3. Experiments & Results

In this section, we present the experimental settings and results of the ensemble SINet

architecture including the impact of transfer learning for performance gain on the smaller

HOPV datasets.

4.3.1. Experimental Settings

The models were implemented using Python and Keras [61] with TensorFlow [62] as the

backend. We used Adam as the optimization algorithm with a mini-batch size of 32.

For generating the InChI fingerprints for the CEP dataset, we used RDKIT [63] library

to generate InChI from the molecules. Scikit-Learn [64] was used for data preprocessing

and for evaluating the test set errors. All experiments are carried out using NVIDIA

DIGITS DevBox with a Core i7-5930K 6 Core 3.5GHz desktop processor, 64GB DDR4

RAM, and 4 TITAN X GPUs with 12GB of memory per GPU. We performed extensive

hyperparameter search as well as architecture search for SINet. For our experiments, we

used a learning rate of 0.001. We used the mean squared error (MSE) as the loss function

and used the mean absolute % error (MAPE) as the performance metric. Early stopping
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was used during training to avoid over-fitting. For our experiments, we split each dataset

into 70-20-10 ratio for training, test and validation sets; we used the same split for all

experiments of each dataset. Stratified shuffling was used to ensure that the distribution

of HOMO values for all the 3 subsets was similar.
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4.3.2. Impact of Leveraging SMILES & InChi

First, we explored the performance of using different types of input representations and

their combinations on the source and the target datasets. On the source dataset of

Harvard CEP, we observe that the MAPE decreased to 0.213% while using the SINet

model as shown in Figure 4.2. In contrast, while using the individual input representations

with the individual branch of SINet, the MAPE values were 0.972% and 0.457% using

SMILES and InChi. This was also true for the target datasets of experimental and

DFT-computed values from HOPV. We conjecture the prediction mainly improves while

leveraging multiple molecular representations because the two line notations- SMILES

and InChI differ in the representation and detail; hence, the model can learn different

feature representation from the two input representation, leading to better performance.

Furthermore, we experimented with simply combining the two input representations-

SMILES and InChI into a single input vector (represented as SMILES + InChI in Fig-

ure 4.2), before feeding them into a branch of SINet, the MAPE, in this case, was 0.430%

which is lower than while using single input. However, there was no benefit from simply

combining the two input representations into a single vector in the case of experimental

target dataset. We surmise that this could be because the two line notations encode dif-

ferent representations with varying lengths for different compounds, and a concatenation

of the representations was not sufficient for learning both notations. Our results recom-

mend that a better way to incorporate multiple input representations such as SMILES

and InChI, in this case, is to design the deep neural network to have different model

components to handle each of them before the learned features can be combined to make

the final output as in the case of SINet.
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In addition, we can observe the impact of training data size on the prediction per-

formance; the prediction error of SINet on Harvard CEP dataset is significantly lower

than the prediction error of SINet on the two other relatively smaller datasets. This also

justifies the use of large dataset as the source dataset while using transfer learning to a

smaller target dataset.

4.3.3. Impact of Transfer Learning

We also investigated the impact of transfer learning from the DFT-computed dataset of

Harvard CEP to the relatively smaller DFT-computed and experimental datasets from

HOPV. For the experimental data having only 243 samples, the MAPE in case of SINet

decreased significantly from 2.782% to 1.513% which is around half. We observed similar

changes when using just one input or their simple combination as shown in Figure 4.3(a).

For the target dataset of DFT-computed dataset with 344 samples, the error for SINet

decreased from 2.118% to 1.478% (in Figure 4.3(b)). Such a significant drop in the MAPE

for both our target datasets illustrates the efficacy of using transfer learning from large

datasets when doing predictive modeling on smaller datasets with a lesser number of

samples. The experiments exhibit that when a model is trained on a large dataset (model

parameters being initialized from a model trained on large source dataset), it already

captures the required features from the dataset which makes it easy to learn the features

present in target data from a similar domain on which it is fine-tuned.
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4.4. Summarization

In this chapter, we presented a novel approach of predictive modeling for HOMO

values of donor molecules for the generation of OPV candidates by leveraging both large

DFT-computed dataset and relatively smaller DFT-computed and experimental datasets

using both types of input representation- SMILES and InChI, using the concept of transfer

learning with deep neural networks. For the source dataset, we leveraged the Harvard

CEP dataset which contains millions of OPV candidates with the DFT-computed HOMO

values. For the target dataset, we used the DFT-computed and experimental data from

HOPV which contains relatively smaller data- 344 and 243, respectively.

Our results demonstrate significant benefit from the use of both types of input rep-

resentations as well as from transfer learning from a larger dataset. It showcases that

leveraging machine learning with computational and experimental chemistry can play an

essential role in the expedition of a systematic design of high-efficiency OPV materials,

and holds significant promise as a potential solution to future energy needs. The search

process for the donor cells with high HOMO values can be made faster by leveraging

transfer learning from a larger calculated dataset to a small well-curated experiment-

theory calibrated dataset, and this exposes an exciting area in materials discovery, and

in particular for solar cell technology. Further, as our approach is based on simple text

representations, it is easier for chemists to explore adding or removing subgroups to the

chemical compounds to explore the impact on power efficiency instead of performing

elaborate experiments.
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CHAPTER 5

Development of machine learning-based surrogate model for

additive manufacturing simulations

5.1. Introduction

Additive Manufacturing (AM) is a modern manufacturing approach in which digital

3D design data is used to build parts by sequentially depositing layers of materials [138].

AM techniques are becoming very popular compared to traditional approaches because

of their success in building complicated designs, fast prototyping, and low-volume or one-

of-a-kind productions across many industries. Direct Metal Deposition (DMD) [139] is

an AM technology where various materials such as steel or Titanium are used to develop

the finished product. Computational simulations are an essential part of the AM de-

sign and optimization as they eliminate the trial and error on expensive manufacturing

processes. Finite element-based multi-physics simulation models (FEM) [140, 141] are

designed to replicate the AM process before generating the required part using AM. How-

ever, FEM-based simulations are computationally costly and time-consuming. This leads

to the motivation to develop a predictive tool based on machine learning (ML) that can

instantaneously yield the simulation result instead of performing expensive physics-based

simulations.

A real-time AM control system can be useful in manufacturing because it can control

machines considering the changes in the environment and the machine itself. This can



80

be more important in AM since most of the vital parameters in the quality of final

product change considerably during the build process. The temperature field created while

building a part using AM is one of the critical components in determining microstructure,

porosity, and grain size. This system requires a fast data-driven predictive model that

can relate machine parameters and replicate desired property behavior accurately using

ML techniques, without the need for computationally expensive calculations. There has

been an upsurge of interest in the manufacturing community to connect and share data

between geographically distributed facilities [142, 143]. We believe a significant amount

of experimental data will be available in the near future for manufacturing processes,

especially AM. This urges the scientific community to develop suitable data-driven tools

and techniques.

In this work, we use Generalized Analysis for Multiscale Multi-Physics Application

(GAMMA) [144, 145], a FEM based method for developing the database to train our

model-based control system. GAMMA is used to solve the time-dependent heat equation

and simulate the manufacturing DMD process at the part scale. As the AM process is a

spatiotemporal phenomenon (since there is cooling and reheating depending on whether

and when a neighboring element is created), any approach for predicting the tempera-

ture profile must include the information about neighboring voxels as well as temporal

information. In our proposed approach, we harness this characteristic of the AM process

during feature reconstruction for our learning system. The input features for our pro-

posed system include the distance of a given voxel from the current laser beam in the x,

y and z axes, laser intensity, time at which the point is created, the time elapsed, and

tool speed. One of the advantages of a real-time system is instead of training a prior
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model ahead of time, one can be developed in-situ. This is crucial for the versatility of

ML-driven control system, especially as factors such as laser path, laser speed, and laser

temperature can largely influence the temperature profile in AM processes which in turn

can predict presence of residual stress [146]. Residual stress caused in AM is the critical

issue for fabricated metal parts since steep residual stress gradients generate distortion

which dramatically deteriorate the functionality of the parts.

The proposed approach uses extremely randomized trees (ERTs) [100], a tree-based

ensemble algorithm to iteratively train a model-based control system. A model is devel-

oped on the features of first m voxels to predict the temperature of next n voxels at the

first stage, and then iteratively a new model is developed at every subsequent stage using

the ground-truth temperature of m voxels as well as the predicted temperature of the n

voxels. The result of this work is a real-time iterative supervised predictive model that

achieves % mean absolute error (% MAE) below 1% for predicting temperature profiles

for AM processes. The iterative model outperforms a traditional model that does not use

predicted intermediate voxel temperatures. The code is made available for the research

community at https://github.com/paularindam/ml-iter-additive.

5.2. Background and Related Works

In this section, we present a background of AM and DMD, and the FEM code used for

developing the database and some related works to the application of machine learning

in materials informatics.

https://github.com/paularindam/ml-iter-additive
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5.2.1. Additive Manufacturing: Overview

The initial development process for creating a three-dimensional object using computer-

aided design (CAD) for a layer by layer deposition was realized due to a desire for rapid

prototyping [147, 148]. It reduced the time-cycle of realizing an initial prototype after

the conception of design by engineers [149]. Among the major advances that this process

presented to product development are the time and cost reduction, and the shortening of

the product development cycle. Further, it led to the possibility of creating shapes that

were difficult to be machined using traditional manufacturing processes.

AM can appreciably reduce material waste, decrease the amount of inventory, and

reduce the number of distinct parts needed for an assembly [150, 151]. Further, AM can

reduce the number of steps in a production process, both in the case of tool making as

well as direct manufacturing, reducing the need for manual assembly [152]. Besides, AM

processes can significantly reduce the total amount of tooling required and its impact on

the cost [153]. AM parts can be manufactured in an almost final state, thus reducing the

amount of connecting parts required to put them together and decreasing part count [154].

5.2.2. Direct Metal Deposition

DMD [155] is an additive manufacturing technology using a laser to melt metallic powder.

DMD processes can produce fully dense, functional metal parts directly from CAD data by

depositing metal powders using laser melting and a patented closed-loop control system

to maintain dimensional accuracy and material integrity [156]. Heat is generated as a

focused heat source such as a laser to sufficiently melt the surface of the substrate and

creates a melt pool. A focused powder stream provides material for the melt pool using



83

Deposited Material 

Substrate

Laser Beam 

Powder Stream

Processing Direction

(a) DMD overall setup

Z
Y

X

Laser Path

(b) DMD Laser Path on Substrate

Figure 5.1. Additive Manufacturing using Direct Metal Deposition (DMD)
process. The laser source provides the heat while the powder stream pro-
vides the metal for the deposition. The metal powder gets melted by the
heat from the laser beam and deposited on the substrate. The laser scans
over the substrate in a zigzag motion.

Figure 5.2. The simulated metal surface built using DMD is depicted in
the figures. The first figure demonstrates the metal created using DMD on
the substrate with the temperature scale. The color of the metal surface
indicates the spatio-temporal characteristic of the DMD process.

to form a raised portion of the material. The nozzle is moved over the substrate using a

computer-controlled positioning system to create the desired geometry. This is illustrated

in Figures 5.1 and 5.2 that depict the DMD process and laser motion, and the metal

surface built across layers, respectively.
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5.2.3. Finite Element Method Solver

Finite element method (FEM) analysis is a numerical approach for solving differential

equations over complex geometries with broad applications in simulating structural prop-

erties and fluid dynamics [157]. In this method, first the domain is discretized into small

elements, and then a system of equations is assembled over all the elements. GAMMA is a

FEM framework that solves transient heat transfer equations for metal powder-based AM

processes such as Directed Energy Deposition (DED) [158] and Selective Laser Melting

(SLM) [21]. Although an accurate thermal analysis of AM provides vital information for

determining microstructure evolution and mechanical performance of the part [141, 159],

this kind of analysis can take weeks or months of computing time and therefore too com-

putationally expensive for large-scale problems or optimization purposes [160]. For a

given set of processing parameter inputs such as build geometry, laser power, and scan

speed, GAMMA calculates spatially-dependent thermal histories within the part, such

as temperature profiles and maximum cooling rate. In this work, we use GAMMA to

generate the database to train our ensemble model.

5.2.4. Related Work

The idle pace of development and deployment of new/improved materials has been deemed

as the main bottleneck in the innovation cycles of most emerging technologies [23]. Ex-

ploring and harnessing the association between processing, structure, properties, and per-

formance is a critical aspect of new materials exploration [19, 97, 161, 162]. Data-driven

techniques provide faster methods to know the important properties of materials and to

predict feasibility to synthesize materials experimentally. This can expedite the research
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process for new materials development. Many initiatives to computationally assist mate-

rials discovery using ML techniques have been undertaken [88, 94, 95, 103, 104, 163–170].

There has been some limited work on the application of ML techniques for AM pro-

cesses. Mozaffar et al. [171] proposed a data-driven approach to predict the thermal

behavior in a directed energy deposition process for various geometries using recurrent

neural networks. The proposed approach mapped the position of a point on the print-

ing surface, the time of deposition, the distance of the closest cooling surface, and laser

parameters with the thermal output. Baturynska et al. [172] propounded a conceptual

framework for combining FEM and ML methods for optimization of process parameters

for powder bed fusion AM. Choy et al. [173] designed a novel recurrent neural network

architecture 3D recurrent reconstruction neural network (3D-R2N2) that learned map-

ping from images of objects to their underlying shapes in an AM simulation environment.

Scime et al. [174–176] developed supervised as well as unsupervised models for detecting

irregularities and flaws on the laser bed during the AM process.

5.3. Data

In this section, we explore the generation of the FEM dataset, the transformation

of the FEM dataset for machine learning and description of input features and voxel

categories.

5.3.1. Data Generation

The database for training the supervised model was developed using GAMMA by solving

time-dependent heat equations and simulating the manufacturing process at the part
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scale. It provides temperature and heat flux for every time step for every element that is

created during the AM process. In this work, we utilize a GAMMA FEM simulation of

20 mm x 20 mm x 3 mm cuboidal dimensions. A mesh voxel size of the edge length of 0.5

mm was used. This refers to a cross-section of 40 x 40 voxels along the x (lateral) and y

(longitudinal) axes, and Therefore, there are 40 x 40 x 6 voxels in the simulation or 9600

voxels. The time taken for the FEM simulation is about an hour.

The voxel edge length of 0.5 mm chosen in this work is fairly coarse. However, the

time taken for a simulation exponentially increases as the mesh voxel size is made finer.

For instance, if we reduce the mesh size to half or 0.25 mm, the FEM simulation would

take 9 hours. Moreover, the number of data points is in the order of O(n2) in terms of

the voxels. This is because the FEM simulation contains the temperature history of a

voxel from the time of creation to the end of the simulation. Therefore, if one voxel is

created at each timestep, there will be n data points pertaining to the first voxel created,

n− 1 data points for the second voxels and so on resulting in n ∗ (n + 1)/2 data points.

However, as the laser deposition process creates multiple voxels at the same time-instant,

the number of total data points is significantly smaller but nonetheless of the order of

O(n2). This is because each data point corresponds to a unique (x, y, z, t) where (x, y, z)

represents an individual voxel and t represents the timestep. In this case, for the 9600

voxels, there are about 9.051652e+06 or about 9.05 million data points. It must be noted

that each timestep does not create the same number of voxels as the simulation mimics

the weaving (zigzag) motion of the laser (illustrated in Figure 5.1(b)). More voxels are

created during the lateral movements as compared to when the laser motion reverses.
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We chose this simulation size by making a trade-off between a very large simulation

that would take days or weeks and potentially create trillions of data points and a small

simulation that have too few data points to train and evaluate the proposed approach

rigorously.

5.3.2. Data Pre-processing

Figure 5.3(a) illustrates the overall temperature profile for the DMD process at the end

of the AM process. The index of the point in the x-axis demonstrates the time of the

creation of the point. We can observe that the points with the lower index or those

created earlier slowly approach the room temperature. However, the temperature of the

points created later is much higher. Although the overall temperature curve goes higher,

we can observe troughs and crests. The troughs are a result of slow cooling of a point

created by DMD, and the crest happens when a nearby voxel gets created or heated up.

Figure 5.3(b) illustrates the temperature pattern across different layers are similar, as well

as across different laser intensities. Therefore, for a higher laser intensity, we can observe

a steeper curve. The temperature curves indicate that the AM temperature profile has

spatiotemporal as well as other factors dependent on the laser.

There are many features that impact the temperature of a given voxel. The most

important elements are the position of the voxel (x,y,z) and the time elapsed after the

creation of a voxel. Instead of considering the absolute voxel (x,y,z) position, we consider

the distance in the x,y,z with the current position of the laser. The temperature of a given

voxel change with time: cooling or heating. As time passes, the temperature of a given

voxel reduces. However, if a new voxel is created proximal to the given voxel, this leads to
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(a) Temperature Profile of overall Additive
Manufacturing Process at the end of the FEM
simulation

(b) Temperature Profile across different laser in-
tensities and layers

Figure 5.3. Temperature profiles for the DMD process. The temperatures
are in Kelvin (K) scale.

the increase of the temperature of the voxel. However, the temperature profile fluctuates

because of cooling and subsequent reheating due to new material creation. Hence, the

feature set for training the supervised model that is agnostic of the temperature of adjacent

elements would not provide sufficient information for a supervised learning algorithm to

learn the AM process. The temperature of each element is influenced by the temperature

of its neighboring elements. The following are the input features used for building the

proposed predictive model:

• Historical Features: Temperature of the given voxel at t − 1 through t − 5 (if

applicable)

• Spatio-Temporal Features: Temperature of neighboring 26 voxels at t− 1

• Spatial Features: relative x, y and z coordinates of the current voxel with respect

to the current position of the laser
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• Temporal Features: Time of voxel creation and time elapsed since the creation

of given voxel

It is to be noted that the current position of the laser is dependent on both the tool

path as well as the tool speed of the laser. Further, it is not necessary that all the input

features are available for all the data points. This is possible in case of voxels at the

edge that does not have neighboring voxels or the absence of temperature history of the

given voxel. If the temperature of any feature is missing, we assign a dummy value of -99

as most machine learning algorithms do not accept missing values. One of the essential

elements of selecting features is selecting independent attributes. We attempt to build a

predictive model which only depends on elements which can be reproducible independent

of the dataset on which it has been trained. Figure 5.4 depicts the cross-section of the

AM-surface to represent conduction of heat between neighboring voxels.

5.3.3. Voxel Categories

We classify the voxels into five categories based on the spatial location of the voxel. As

the temperature profiles of voxels surrounded by other voxels may differ from voxels at

the periphery, we wanted to investigate if the voxels at the outer edge that have one or

more missing neighboring voxels are predicted worse than the interior voxels. This is

because our proposed model is dependent on the temperature of the neighboring voxels.

To characterize this, we categorize the voxels into five categories.

• Interior: all neighboring voxels present

• Edge (Lateral): neighboring voxel on the x-axis missing

• Edge (Longitudinal): neighboring voxel on the y-axis missing
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Figure 5.4. Illustration of the cross-section of the AM-surface to represent
conduction of heat on target voxel (labeled in red) from neighboring voxels.
However, as this is a 2D cross-section of a voxel, there are eight neighboring
voxels indicated by arrowheads. In three dimensions, a voxel is surrounded
by 26 neighboring voxels. The different colors of adjacent layers indicate
the relative temperature. Layers farther away from a newly created voxel
are comparatively cooler: green indicating cool, yellow indicating warm and
orange indicating hot.

• Edge (Vertical): neighboring voxel on the z-axis missing

• Edge (Diagonal): a neighboring voxel on the planar or cubical diagonal is missing

(but no lateral, longitudinal or vertical neighbors are missing)

To avoid confusion, we avoid categorizing a single voxel into multiple categories. If a

voxel has a missing neighbor on the x-axis, it is considered an edge (lateral) voxel even

if it has a missing y or z-axis neighbor. Similarly, if a voxel has a missing neighbor on

y-axis but no missing edge on the x-axis, it is considered as an edge (longitudinal) even

if there is a missing z-axis neighbor. We decide in this fashion as we can anticipate that

newly created voxels might have a missing voxel vertically above (z axis). Therefore, a

voxel that has x or y-axis neighbors missing are considered more distinct than a missing

z-axis neighbor. If a voxel has any neighbor missing apart from the immediate adjacent
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Figure 5.5. The overall methodology of the proposed multi-stage iterative
model for predicting temperature profile of an additive process

neighbor along the x, y and z axes, it is considered a diagonal edge voxel. It is noteworthy

that when we categorize a voxel, we do it at a specific time t. This is because for a given

newly created voxel at layer l would be an edge(lateral) voxel at the time of creation, but

the layer l + 1 is deposited on top of this voxel, it would be an interior voxel.

5.4. Method

The motivation and methodology of the proposed iterative approach are outlined in

this section. Figure 5.5 illustrates the flow diagram of the proposed methodology.

5.4.1. Motivation for real-time system

Control systems in manufacturing can be divided into two broad categories [177]. The

first class is error-based control systems in which changing parameters (parameters of

manufacturing machine such as laser power, speed) are estimated and based on the error

values from the experiment, the initial guess is corrected until the desired criteria is met.
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The second class is model-based in which instead of estimating the initial value of machine

parameters, they will be determined by a model.

While an error based control system can be useful in many applications such as motion

control, its application in AM process parameter control is not common because a signifi-

cant deviation will ruin the part. Developing control manufacturing processes in a way to

achieve desired properties in the final product is not a new attempt. It started from simple

trial and errors and gradually developed to complicated multiple-layer feedback control

systems to manipulate system settings for real-time control. However, growing demand

for controlling more and more detailed and complicated properties of products overpassed

current science and many scientists tried to come up with new methods to overcome this

challenge. As a data-driven methodology is more intuitive with a model-based system,

our proposed approach outlines such a control system where the model is developed by

training a machine learning algorithm.

5.4.2. Iterative Ensemble Model

We explored across many regression algorithms for the developing our models includ-

ing linear regression (ordinary least square), regularized linear regression: Lasso (L1-

regularization) and Ridge (L2-regularization), boosted and bagged decision trees. We did

not consider neural networks for this framework. Although, a recurrent neural network

model trained on temporal features can be combined with a feed-forward neural network

trained on non-temporal features, training deep neural networks would take hours to

train which is many order of magnitudes time more than the simulation time for FEMs

and not feasible for a real-time prediction system where training has happened in-situ.
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Table 5.1. Comparison of performance for different machine learning algo-
rithms with corresponding R2 and % MAE based on training on the first
200 timesteps and predicting next 300 timesteps. For each algorithm, we
explore various hyperparameters and present the best model.

Algorithm R2 % MAE Training Time
(in seconds)

Linear Regression 0.23 25.08 0.52
Lasso Regression 0.21 23.11 0.53
Ridge Regression 0.38 17.28 0.56
ARIMA 0.15 29.39 0.67
Decision Trees 0.76 9.74 2.30
AdaBoost (20 trees) 0.89 9.40 9.89
AdaBoost (50 trees) 0.92 6.45 55.27
AdaBoost (200 trees) 0.94 3.21 202.58
XGBoost (20 trees) 0.71 13.25 15.65
XGBoost (50 trees) 0.96 2.59 30.92
XGBoost (200 trees) 0.97 2.01 105.67
Random Forest (20 trees) 0.96 1.66 9.88
Random Forest (50 trees) 0.97 1.44 26.68
Extra Trees (20 trees) 0.99 0.81 7.25
Extra Trees (50 trees) 0.99 0.21 21.32

Further, algorithms based on autoregression and moving average such as ARIMA [178]

would not be able to capture spatial non-temporal relationships. This is also evident from

our benchmarking experiment in Table 5.1. We considered two metrics R2 (coefficient of

determination) and % MAE to evaluate the performance of the models.

Algorithms using an ensemble of decision trees have achieved state of the art results

for various machine learning tasks [179]. As a non-parametric method like decision trees

performed better than parametric methods like linear regression, we decided to explore

both boosting and bagging decision trees. Ensemble-based methods have been successful

in tackling problems with sequential components [180, 181]. While AdaBoost and XG-

Boost are tree-based ensemble boosting algorithms in which each successive tree harnesses

the decision made by the previous tree, bagged algorithms like Random Forest(RFs) and

ERTs make a decision based on the average of many different trees. For both boosting
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and bagging, weak learners are utilized in the form of trees with limited depth. Boosting

models are sequential learners and harnesses weak learners in sequence. As bagged models

use many weak tree-based learners in parallel, and hence can be parallelized in the order

of the number of processors. As the time of training is essential for a real-time applica-

tion, we choose bagged decision trees and in particular, ERTs as they outperform RFs for

our experiments. Table 5.1 demonstrates the performance of all the different algorithms

trained on the first 200 time steps for predicting the next 300 time steps.

ERTs use an ensemble of decision trees in which a node split is selected completely

randomly with respect to both variable index and variable splitting value. ERTs are

very good generalized learners and perform better in the presence of noisy features. As

compared to RFs, ERTs decrease the variance and increase the bias by randomly selecting

a node split independent of the splitting value. Both RFs and ERTs can utilize bootstrap

aggregation wherein each weak learner builds a model based on a random sample of

observations from the training data, with replacement. Bootstrap aggregation helps in

reducing variance in bagged ensembles.

Researchers have proposed rolling recursive or iterative autoregressive moving average

modeling [182] for time series prediction. In this work, we decided to explore iterative

prediction based on ERTs as we have a combination of historical as well as spatiotemporal

features. We propose an iterative model in which an initial model is first developed

based on the ground-truth data. Then, the data points predicted by the initial model

is added to the ground-truth data to develop a model for the next stage, which predicts

the temperature profile of voxels for future time-steps. We iteratively keep predicting

future time-steps using predicted temperature profiles from the previous stage alongside
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ground-truth data. Figure 5.6 demonstrates the iterative learning process of our proposed

model.

Fit ensemble 
model on first 
X timesteps 

Predict next 
i timesteps 

Fit ensemble 
model on first 
X+i timesteps 

Predict next 
i timesteps …

Alternating 
fit and 
predict stages

Predict  
final i 

timesteps 

Fit ensemble 
model on T- i 

timesteps 

Figure 5.6. The proposed model using ERTs to predict temperature profiles
for additive manufacturing processes. It is to be noted that the number of
data-points predicted at each step is not the same as the number of data-
points for each voxel. This is because the model predicts not only the
temperature of the newly created voxels but also the temperature of the
same voxels present in the training set at a later time-step.

5.5. Experiments & Results

In this section, we present the experimental settings and describe the results of the

proposed system for predicting temperature profiles in an AM process.

All experiments are carried out using NVIDIA DIGITS DevBox with a Core i7-5930K 6

Core 3.5GHz desktop processor, 64GB DDR4 RAM. The python VTK librarywas used for

processing and converting the voxel data. The data preprocessing, as well as most of the

regression models, were implemented using Scikit-Learn [64]. The XGBoost package [123]

was utilized for creating the xgboost model. The ARIMA model was trained from the

statsmodels package [183].

For the iterative model, we performed extensive grid-search across various sizes of

time step intervals and found the best results when the time step interval was equal to

20. For the experiments, we evaluate with different combinations and ratios of train and

test splits. It is to be noted that instead of splitting the train and test set based on a

fixed fraction, we divided the dataset based on the timesteps. For instance in Table 5.2,
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Table 5.2. Comparison of combinations of time-steps used for training and
test in the iterative model (with corresponding R2 and % MAE). We vary
the number of time-steps used for training and validation. The total number
of time-steps - sum of the training and validation time-steps are always equal
to 1200.

Training Test R2 1*% MAE
No. of timesteps No. of datapoints No. of timesteps No. of datapoints

(in millions) (in millions)
1000 6.75 200 2.30 0.992 0.289
800 4.34 400 4.71 0.989 0.679
500 1.72 700 7.33 0.982 1.329
300 0.63 900 8.42 0.972 1.848

Table 5.3. Comparison of proposed iterative model with a direct model that
directly predicts the temperature of subsequent points. We present the time
taken as well as regression metrics (corresponding R2 and % MAE) for both
the models. The initial number of time-steps used for training is set to 200
and the size of the iteration is set as 20 time-steps. We vary the number of
future time-steps predicted.

1*Iterations Future Iterative Model Standard Model
Timesteps
Predicted

Time R2 % MAE Time R2 % MAE
(in seconds) (in seconds)

10 200 68.69 0.989 0.675 0.293 0.921 5.39
20 400 137.08 0.978 1.444 0.308 0.906 5.71
30 600 210.04 0.976 1.489 0.317 0.876 6.07
40 800 278.61 0.971 1.903 0.480 0.861 6.55
50 1000 353.96 0.969 1.721 0.590 0.794 6.63

we use data points up to 1000, 800, 500 and 300 timesteps for training and then we

predict the next 200, 400, 700, and 900 timesteps respectively. For instance, when we use

800 timesteps for training and 400 for the test set, it corresponds to about 4.34 million

training data points and 4.71 million test data points.

Table 5.3 compares the timing and regression metrics for the proposed iterative model

with a standard non-iterative model that directly predicts temperatures of future time

steps varying between 200 to 1000. This experimental design of selecting training data

based on timesteps instead of layers also helps in generalizing the training set-up. For
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Table 5.4. Comparison ofR2 and Mean Absolute Error% across the different
types of voxel

Type of voxel % of overall R2 % MAE
voxels

Interior 40.15 0.990 0.916
Edge (Lateral) 4.92 0.992 0.898
Edge (Longitudinal) 5.09 0.988 0.923
Edge (Vertical) 49.20 0.989 0.918
Edge (Diagonal) 0.63 0.988 0.926

Table 5.5. Comparison of number of trees/estimators in the ensemble. As
we vary the number of estimators, we present the trade-off in the form of
time and R2 and Mean Absolute Error%. The number of voxels predicted
in each iteration is 25, and there are 40 steps in each iteration

No. of estimators Overall Time R2 % MAE
(in seconds)

4 154.5 0.964 2.14
10 257.5 0.970 1.38
20 493.2 0.975 1.29
50 902.4 0.981 1.03

instance, the first 200 timesteps would represent a few completed layers and an incomplete

layer. The same intuition follows for the timesteps in the test set. By training on different

timesteps allows us to generalize the framework to different shapes. Although the direct

model is much faster, the iterative model performs much better than the direct model.

For instance, while predicting the temperature for 1000 future time steps, the iterative

model takes 353.96 seconds, the direct model requires 0.29 seconds. However, we can

observe that the % MAE value of the direct model is much worse as compared to the

iterative model. While the iterative model has R2 between 0.97 and 0.99 and % MAE

between 0.68 to 1.73 %, the direct model has R2 between 0.79 and 0.92 and % MAE

between 5.39 to 6.63 %.
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Figure 5.7. The feature importance for the top input features in the ensem-
ble iterative approach

(a) 4 trees (b) 10 trees

(c) 20 trees (d) 50 trees

Figure 5.8. Scatterplot for predicted vs. FEM temperatures. As the num-
ber of estimators/trees increase, the prediction accuracy improves.

The results in Table 5.4 illustrates that interior and edge (vertical) voxels comprise the

bulk of the voxels (40.15% and 49.20%). This is anticipated as for any new layer created,

none of the voxels in the new layer would have a vertical neighbor until a new layer is

deposited. We also find that there is no significant difference in the prediction accuracy

between the type of voxels. This demonstrates further that our iterative prediction model

is able to learn the temperature profiles for both edge voxels as well as interior voxels.
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Table 5.5 depict how varying the number of estimators (trees, in the case of ERTs)

impacts the overall time (sum of the training and prediction times). As expected, the

% MAE reduces and R2 increases as the number of estimators increase. The variance of

bagged ensembles reduce as more trees are used to make the prediction, and MAE reduces

with variance. However, as the overall time increases with the number of estimators, any

deployed system would need to make a trade-off between reducing the % MAE and the

cost and time of the available computing resources.

Figure 5.7 illustrates the impact of the temperature profiles of the voxels immediately

surrounding the target voxel for which we are predicting the temperature profile. The

voxels on the x-axis have a more significant impact than the voxels on the y-axis. This

is expected as the direction of the laser is towards the x-axis. Further, the importance

of the T immediate (y + 1) and T immediate (y − 1) features are equal and this is also

unsurprising as the laser path zig-zags on the y-axis during the AM process (as illustrated

in 5.2b) and is therefore agnostic of the directionality in the y-axis. Figure 5.8 depicts

the scatterplot for the predicted vs. the ground-truth FEM voxel temperatures. We can

observe that the prediction accuracy increases with the number of estimators. Further, we

have fewer outliers when the number of estimators is higher. This is expected as bagged

ensembles perform well based on crowd-sourcing the prediction of weak learners which

are likely to have a high bias on their own but have low bias overall as an ensemble.

The primary motivation of this work was to develop an ML-aided framework that can

reduce or replace FEM simulations. Hence, it was very important to have a model that

has a low MAE guarantee. ERTs are especially effective at creating data-driven rules for

handling different kinds of data points. For a voxel that has been created long ago, such as
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in the first layer, the temperature of the voxel would not change as a new voxel is created

at the topmost layer. However, the temperature of a given voxel created few time steps

or a voxel created many time steps before but immediately below a newly created voxel

would be high. Not only are ERTs fast to train, but they are also easy to interpret as we

can rank the features as well as visualize the different candidate trees. Interpretability of

algorithms is extremely important in the scientific and engineering community.

5.6. Summarization

This chapter presents essential components of a scientific framework for a model-based

real-time AM control system. The proposed approach utilizes extremely randomized

trees - an ensemble of bagged decision trees as the regression algorithm iteratively using

temperatures of prior voxels and laser information as inputs to predict temperatures of

subsequent voxels and is able to achieve % MAE below 1% for predicting temperature

profiles. One of the advantages of a real-time system is instead of training a prior model

ahead of time, one can be trained in-situ. It is crucial for the versatility of the AM ML-

driven simulation process, especially as factors such as laser path, laser speed, and laser

temperature can largely influence the temperature profile.
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CHAPTER 6

Microstructure Optimization with Constrained Design

Objectives using Data-Driven Sampling

6.1. Introduction

One of the primary aims of materials science and engineering research is to under-

stand the association between materials’ processing, structure, properties, and perfor-

mance [4, 7, 8, 11, 19, 161, 184–187]. It is recognized that even for a particular alloy

system, variability in microstructure leads to a wide range of materials properties, and

it substantially impacts the materials’ performance, especially under extreme conditions.

Thus, optimization of the microstructure can significantly improve the materials’ perfor-

mance. It is even more pertinent for sensitively engineered components that use magne-

tostrictive materials. Magnetostrictive materials undergo a change in shape or dimensions

in response to a magnetic field. Further, such materials can respond to external stresses

by altering their magnetic states. The state of the art of magnetostrictive materials and

their applications in a large variety of engineering applications was discussed by Olabi

and Grunwald [188]. The authors also showed improvement in material features with the

use of magnetostrictive materials. The magnetostrictive properties of different materials

such as cubic Laves phases such as TbFe2, Terfenol D, and SmFe2, as well as Fe-X alloys

based on Fe-Ga and Fe-Al, were presented by Grossinger et al. [189]. The design of mag-

netostrictive actuators and transducers has been discussed in literature [188, 190–192];
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however, the design of microstructural properties of magnetostrictive materials has not

been studied extensively yet. Galfenol is one such example of a magnetostrictive mate-

rial [1, 193]. It has been widely used in aerospace applications as a sensor material in beam

shaped structures. Galfenol can be processed using conventional rolling and wire drawing

equipment, and it can be machined using conventional mills and lathes, and welded to a

wide array of materials. The potential of Galfenol to develop desired anisotropic proper-

ties and flexibility regarding processing makes it a lucrative material. The single crystals

of Galfenol material can provide large magnetostriction; however, their preparation is ex-

pensive. It is possible to develop comparable polycrystalline textured Galfenol material

as expensive single crystals by applying thermomechanical processes such as rolling and

extrusion [194–196]. However, control and prediction of the large changes in properties

such as magnetostriction and yield strength during thermomechanical processing can be

difficult. For instance, warm rolled and annealed specimens retain high magnetostriction

but are quite brittle; whereas, cold rolled specimens have high yield strength but lose their

magnetostriction [197, 198]. Experimental studies suggest that internal inhomogeneous

strains introduced by microstructural changes play a major role in determining the final

magnetostriction in Galfenol [199]. The computation of magnetostrictive strain of a poly-

crystalline Galfenol material was studied before by Kumar and Sundararaghavan [193].

The orientation distribution function (ODF) is used to represent the microstructure.

The ODF represents the volume fractions of the crystals of different orientations in the

microstructure. The complete range of properties obtainable from the space of ODFs is

represented using property closures, approximated by the space defined with either upper

or lower bound of a given property [1]. Upper bound closure of stiffness values represents
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the range of properties obtainable by the upper bound homogenization relation while a

lower bound closure of compliance values shows the properties obtainable by the lower

bound homogenization equation. An approach that is gaining popularity in new materials

development is selective optimization of certain properties of a material in a particular

direction or plane while sacrificing the properties across other directions or planes that

are not as important for the design problem [2].

There have been few efforts to optimize the microstructure to satisfy a given set of

desired properties. Liu et al. [12] achieved this by directly sampling the ODF space

using a data mining methodology. Some researchers have adopted sampling within the

property hull and use a Fourier basis for discretizing the ODF [200–202]. In [1, 203], Acar

et al. derived an upper bound solution approach starting with generating samples in

the space of macro elements (Young’s modulus and shear modulus parameters) and then

identified multiple optimal solutions through a linear solver. Acar et al. in [2] formulated

a Linear Programming (LP) solution based method for constructing property closures (for

the homogenization relations considered here) by establishing the smallest convex region

enveloping single crystal property points.

However, all these approaches used for constrained microstructure optimization lead

to only one or in some cases, a handful of solutions. Further, the process for obtaining

multiple solutions is often a trial and error based method. On the other hand, conventional

and economical manufacturing processes, such as metal forming and heat treatment can

generate only a limited set of microstructures [197, 199, 204]. Moreover, it may not be

economically feasible to manufacture a single design solution [161]. Thus, there is a big

incentive for developing approaches that can conceive a spectrum of optimal structures.
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This work proposes a data sampling based scheme to find numerous near-optimal mi-

crostructures to maximize yield stress given vibrational design constraints. The proposed

framework involves developing and executing sampling algorithms to generate possible

ODF solutions satisfying the process limitations. The sampling algorithms developed in

this work, partition and allocation schemes, are complementary to one another and en-

sure sampling of the entire feature space. Data points satisfying both the bending and

torsional frequency constraints are generated. The proposed data sampling methodol-

ogy outperforms (or on part with) other optimization techniques and provides 2-3 order

of magnitude more near-optimal solutions. Further, our approach opens up additional

opportunities for reducing the dimensionality of microstructure space to accelerate the

process of achieving solutions that satisfy all the constraints by isolating ODF dimen-

sions that are non-zero across a majority of near-optimal ODF solutions. The solution

methodology presents an extensive approach, and thus it can be applied to different ODF

representations such as finite element discretization and Fourier series expansion.

6.2. Background

6.2.1. Property representation in Rodrigues’ space

The alloy microstructure consists of multiple crystals where each crystal has its distinct

orientation. The ODF represents the volume fractions of the crystals of different orien-

tations in the microstructure. The microstructure of the Galfenol alloy system in this

work is modeled using ODFs [205–208] which are represented by axis-angle parameteriza-

tion of the orientation space, as proposed by Rodrigues [209]. Angle-axis representations

elucidate an alternate way of representing orientations compared to Euler angles. The
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Rodrigues’ parameterization is created by scaling the axis of rotation n as r = ntan θ
2
,

where θ is the rotation angle.

The ODF, a primary concept in texture analysis and anisotropy, is defined based

on a parameterization of the crystal lattice rotation. Orientation distributions can be

described mathematically in any space appropriate to a continuous description of ro-

tations [205, 206, 209]. The orientation space can be reduced to a subset called the

fundamental region, as a consequence of crystal symmetries. Each crystal orientation is

depicted uniquely inside the fundamental region by a parameterization coordinate for the

rotation r. The ODF, represented by A(r), is the volume density of crystals of orien-

tation r. The fundamental region is discretized into N independent nodes with Nelem

finite elements and Nint integration points per element. A detailed explanation of the

ODF discretization and volume averaged equations has been provided in [1, 2, 12, 203].

A single particular orientation or texture component is represented by each point in the

orientation distribution. The orientation distribution information can be used to deter-

mine the presence of components, volume fractions and predict anisotropic properties of

polycrystals. Although the term distribution function is used for ODFs, this is distinct

from ”distribution function” used for cumulative frequency curve in statistics. The ODF

is a probability density but is constrained such that it is normalized to unity over the fun-

damental region. Figure 6.1 represents the finite element discretization of the orientation

space of BCC Galfenol.
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Figure 6.1. Finite element discretization of the orientation space of BCC
Galfenol

The microstructure of an alloy is comprised of multiple crystals, and each crystal has

an orientation. The generalized Hooke’s law for the agglomeration is expressed as:

(6.1) < σij >= Ceff
ijkl < εkl >

εkl and σij represent the volume-averaged strain and yield stress of the agglomeration.

Ceff
ijkl represent the tensor for effective stiffness in the given coordinate system. Ceff is the

average over aggregate of the crystals [2, 210] where < C > represents stiffness tensor for

each crystal.

(6.2) Ceff =< C >

The averaging is performed over an aggregate of the crystal in a macro-scale elementary

volume. Crystal size and shape are ignored, and homogeneous deformity is assumed.

The ODF represents the volume density of each orientation in the microstructure. χ(r)

represents the orientation dependent property for single crystals and < χ > depicts the
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expected value.

(6.3) < χ >=

∫
R

χ(r)A(r, t)dv

Using this parametrization, any polycrystal property can be expressed in a linear form

as follows, where A(rm) is the value of the ODF at the mth integration point with global

coordinate rm of the nth element, —Jn— is the Jacobian determinant of the nth element,

wm is the integration weight associated with the mth integration point, and 1
(1+rm.rm)2

represents the metric of Rodrigues parameterization.

(6.4) < χ >= χ(r)A(r, t)dv =

Nelem∑
n=1

Nint∑
m=1

∫
R

χ(rm)A(rm)wm|Jn|
1

(1 + rm.rm)2

A (which symbolizes the ODF) is a function of orientation r and time t during pro-

cessing that satisfies the following normalization constraint :

(6.5)

∫
R

A(r, t)dv = 1

The complete range of properties obtainable from the space of ODFs is represented

using property closures, approximated by the space between upper and lower bound of

the given property [1].

(6.6) < C >=

∫
R

CAdv



108

The upper bound homogenization relation (above) is based on the assumption of constant

strain throughout the thickness of the beam and is represented by the upper bound closure

of stiffness values. The upper bound average or the Voigt average [211] is calculated by

averaging the particular property (in this case, stiffness) by multiplying the ODF vector

with the property vector. However, the lower bound approach (below) is based on the

assumption of constant stress throughout the plate thickness. For the lower bound average

or the Reuss average [211], the inverse of the given property is averaged. For instance, in

the equation below, compliance (C−1 or S), the inverse of stiffness, is averaged by using

the lower bound approach and the equation is written for the compliance matrix. < C >

and < C−1 > represent the volume-averaged macroscopic stiffness formulation in C and

C−1 space. C−1 refers to compliance.

(6.7) < C−1 >=

∫
R

C−1Adv

The yield stress is computed for the upper and lower bound approaches in terms of

single crystal yield strengths along the beam axis as follows:

(6.8) < σy >=

∫
σyAdv

(6.9) < σ−1y >=

∫
σ−1y Adv
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6.2.2. BCC Galfenol

Galfenol is a general name for an iron-gallium alloy, and the name was first associated in

1998 when it was discovered that adding gallium to iron increases its magnetostrictive ef-

fect [212, 213]. A magnetostrictive material is used to harvest vibrational energy because

of its property to change shape in response to a magnetic field. Galfenol also responds

to external stresses by altering its magnetic state [214]. Researchers have found Galfenol

to demonstrate magnetostrictive strains of up to 400 ppm in single crystal form (which

is more than ten times that of α-Fe [12]). Moreover, processing Galfenol does not need

any customized equipment. It can be processed using conventional rolling and wire draw-

ing equipment, and it can be machined using standard mills and lathes, and can also be

welded to a variety of materials [215]. Galfenol converts applied mechanical energy with

high efficiency (around 70 percent) into magnetic energy and vice versa [216]. Researchers

have found that groups of contorted cells respond to a magnetic field by rotating their

magnetic moments to align with the field which in turn, changes the exterior dimensions

of the crystal. This contortion from the α-Fe structure is responsible for Galfenol’s supe-

rior performance [217]. Adding gallium generates imperfections in iron’s otherwise orderly

lattice thus improving the magnetostrictive property of the resultant alloy [218]. Single

crystals of Galfenol impart large magnetostriction, but the preparation of monocrystal

Galfenol is expensive. Hence, there is an impetus for the development of polycrystalline

Galfenol with favorable properties for various design problems [197, 199, 204]. Figure 7.2

(a) represents the polycrystalline microstructure of Galfenol, with different colors repre-

senting different crystal orientations. For this BCC structure, the Rodrigues fundamental

region includes 76 independent nodal points (ODF values) as shown in Fig. 7.2 (b). It
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is to be noted that the red nodes in Fig. 7.2 (b) are indicating the 76 independent ODF

values, and the ODF values of the blue nodes can be computed using the crystallographic

symmetries.

(a) BCC Galfenol microstructure (b) ODF representation in-

dicating the location of 76

independent nodes in the

orientation space in red

Figure 6.2. Finite element discretization of the orientation space of BCC
Galfenol

6.3. Problem Statement

We aim to explore the microstructure design constraint of a cantilevered Galfenol

beam for a vibration tuning problem with yielding objective. The vibration tuning puts

a restriction on the ODF solutions to have a finite number of directions in the solution

space. The number of independent ODF values is 76 at this time since Galfenol has a

BCC structure [12]. The design objective is determined as the maximization of yield stress

while the first bending and torsional frequencies are constrained for vibration tuning. The
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primary goal of the problem is to find the best microstructure design that maximizes the

yield stress of the beam and satisfies the given vibration constraints.

The rationale behind constraining the operating frequencies is to eliminate possible

dynamic instabilities, for instance, in sensor materials in aircraft beams [219, 220]. The

main goal of the problem is to find the best microstructure design that maximizes the

yield stress of the beam and satisfies the given vibration constraints.

The torsional and bending frequency constraints are given by the following equations:

(6.10a) ω1t =

√
G12J

ρIp

(6.10b) ω1b = (αL)2
√
E1I1
mL4

(6.11) where αL = 1.87510

Here G12 = 1/S66, E1 = 1/S11, and S being the compliance elements (S = C−1), E1

being the Young’s modulus along axis-1 and G12 being the shear modulus in 1-2 plane. In

these formulations, J is torsion constant, ρ is density, Ip is polar inertia moment, m is unit

mass, L is length of the beam and I1 is moment of inertia along axis-1. The mathematical

formulation of the optimization problem is given below:

(6.12) max σy
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(6.13) A ≥ 0

(6.14)

∫
Adv = 1

The optimization problem includes the unit volume constraint by definition (Equa-

tion 6.14). The other constraints are the first natural frequencies to tune the beam

vibration. In this problem, the length of the beam is taken as L=0.45 m, and the beam

is considered to have rectangular cross section with dimensions a=20 mm and b=3 mm.

The values of stiffness parameters for Galfenol single crystals are taken as C11 = 213 GPa;

C12 = 174 GPa and C44 = 120 GPa [1, 2, 203]. C11, C12, C13 and C14 comprise the most

dominant elements in stiffness matrix, a measure of the durability of a given material.

The stiffness values of the polycrystal are computed using the upper bound averaging

(C-space) while the lower bound (C−1-space) computation provides the compliance pa-

rameters. Figure 7.1 depicts the geometric representation of Galfenol beam vibration

problem. There are two sets of constraints presented below. Each set of constraint has a

lower and upper bound on the torsional and bending frequencies.

First set of constraints:

(6.15a) subject to 19.5 Hz ≤ ω1t ≤ 21.5 Hz



113

Figure 6.3. Geometric representation of Galfenol beam vibration problem

(6.15b) subject to 120 Hz ≤ ω1b ≤ 122.5 Hz

Second set of constraints:

(6.16a) subject to 21.5 Hz ≤ ω1t ≤ 23.5 Hz

(6.16b) subject to 100 Hz ≤ ω1b ≤ 114 Hz

It is important to note that both sets of constraints are specimens, and factual con-

straints may differ based on the real material design. Nonetheless, they are representative

of a real-world design problem for magnetostrictive materials where there are bounds on

first natural frequencies.

6.4. Method

An overview of the proposed system is first presented and then the algorithms proposed

for sampling the ODF space for the given problem are explained.
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6.4.1. Overview of the System

We propose a two-step data-driven solution scheme to find optimal microstructure sat-

isfying performance requirements, and design and manufacturing constraints. The first

phase of the approach involves developing and executing sampling algorithms to generate

possible ODF solutions meeting the process limitations. The sampling algorithms i.e.

partition and allocation scheme complement one another and ensure sampling the entire

feature space. Partition warrants that different permutations of non-zero ODF dimen-

sions are explored for a given set of ODF dimension. Allocation guarantees that all the

ODF dimensions are explored sufficiently.

In the second step, data points are generated by satisfying both the bending and

torsional frequency constraints. A future direction for reducing the dimensionality of

microstructure space is highlighted that can accelerate the process of achieving solutions

satisfying all the constraints by isolating ODF dimensions that are mostly non-zero across

a majority of near-optimal ODF solutions. Figure 6.4 illustrates the steps in the proposed

framework in a flow-diagram.

Figure 6.4. Flow diagram of the proposed methodology. Upper and lower
bound approaches for both sets of constraints are repeated for both
problems.
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6.4.2. Algorithms

Two sampling techniques partition and allocation algorithms developed in the proposed

work are presented. The algorithms ensure to address the problem of sufficiently sampling

the problem space and generate ODFs fulfilling the constraints in the problem objective.

6.4.2.1. Partition Method. In this method, k small segments that add up to 1, where

k can vary between 1 to D where D is the number of dimensions. For HCP Titanium

structure, D is 50 for coarse mesh and 388 for finer mesh. We consider the unit length

1 divided into k random intervals or making k random cuts between the interval [0,1],

where k is the dimension of ODF. It is iterated from 1 to D-1 with an increasing number

of samples generated with regards to k and then downsampled to 1000 for each iteration,

except when k=1, D samples exist and are all used.

Figure 6.5. Partition Algorithm : The unit length is divided into k small
segments. k-1 random numbers are used as split points to partition unit
length.

6.4.2.2. Allocation Method. This randomly generates k values at a time, where k can

vary between 1 to D where D is the number of dimensions. In this algorithm, k is the

intended maximum number of dimensions for the ODF. The sum of the product of the

volume fraction (vf) and density functions (df) across each dimension must add up to 1.

Therefore, we continue selecting a value until k values are selected, or the remainder is

sufficiently small. k=1 is the trivial case in which the product of the vf and df equal to 1.
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Algorithm 1 Partition algorithm

0: procedure Partition
0: D ∈ Z
0: for k ∈ {1, . . . , D − 1} do
0: for i ∈ {1, . . . , 1000} do
0: for cut ∈ {1, . . . , k − 1} do
0: Make an arbitrary cut

0: end for{Sample with k cuts generated}
0: end for{1000 samples with different cuts}
0: end for
0: return
0: end procedure=0

Both the partition and allocation methods are based on the heuristic that in a valid

microstructure obeying all the constraints, only a few of all the dimensions of the ODF

vector is non-zero. However, these two methods are complementary or reciprocal to each

other and ensure that the entire feature space is sampled sufficiently. While the allocation

method attempts to find a minimal subset of ODF dimensions that would be non-zero

Algorithm 2 Allocation algorithm

0: procedure Allocation
0: Generate a random k ∈ {1, . . . , 76}
0: Sum← 0
0: for i ∈ {1, . . . , k} do
0: Sum← Sum+ vf(i) ∗ df(i)
0: remainder ← 1− Sum
0: if remainder<ε then {ε:very small value}
0: break
0: else
0: continue
0: end if
0: end for
0: return
0: end procedure=0
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generating a polycrystal solution, the partition method seeks to widen the search across

all the 76 dimensions.

6.5. Results

In this section, we evaluate the proposed data-driven approach in yielding optimal

and near-optimal solutions and find that it outperforms or matches previous state-of-

the-art methods and produces numerous near-optimal solutions which is one of the most

significant contributions of this study. Table 7.1 presents the total number of near-optimal

solutions, or in other words, solutions that are proximal to the optimal solutions. The

near-optimal solutions of this problem correspond to different designs having same or

similar values for yield stress. The algorithms were executed to produce around 5 million

valid (which obey all the constraints) solutions. It took an average of 112.21 ms and 303.45

ms for generating a valid sample for the partition and the allocation scheme respectively.

Table 6.1. Number of solutions within 0.01%, 0.1% and 0.5% of the
optimal solutions. For each set of constraints (Equations 6.15a, 6.16a), 5
million valid data points were generated.

Constraint Bound within 0.01% within 0.1% within 0.5%
1 Upper 3 89 147
1 Lower 9 92 222
2 Upper 7 402 2015
2 Lower 3 116 1579

Optimization techniques including the methods used by Acar et al. such as a genetic

algorithm [1] or linear programming [2] based scheme lead to a unique microstructural

solution or sometimes a few. Acar et al. found multiple solutions by augmenting the

original solution with null space [2]. Acar and Sundararaghavan [2] previously studied an

LP approach to identify the optimal processing routes, which can produce the optimum
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microstructure designs of the same Galfenol vibration tuning problem. One of the limita-

tions of their approach for vetting equivalent solutions is that it only searches for identical

optimal value. However, for practical design applications, a near-optimal solution is ad-

equate as long as the constraints are strictly obeyed, and the near-optimal solutions are

proximal to the optimal solution. For all the four problems (upper and lower bound

approaches for two sets of constraints), 3-9 near-optimal solutions with a neighborhood

of 10−4 (from the optimal solution) are discovered. Further, between 89-402 solutions

in a neighborhood of 10−3 and between 147-1579 solutions in a neighborhood of 5*10−3,

across all the categories are identified. As described before, obtaining multiple optimal

solutions are critical as traditional low-cost manufacturing processes can only generate a

limited set of microstructures. While a single solution may not be economically feasible

to manufacture, hundreds or thousands of near-optimal solutions can accelerate the speed

of materials development. Therefore, it provides flexibility to produce solutions which are

cost-effective selectively, and improve the overall efficiency of manufacturing immensely.

Liu et al.’s [12, 221] approach of using guided and generalized pattern search meth-

ods was compared with the proposed data-driven methodology for the current design

problem. However, neither of these approaches converged to an optimal solution for the

current problem. Although both problems have a yielding objective for a cantilevered

Galfenol beam, the current problem is more convoluted compared to Liu et al.’s because

of additional constraints on the first natural frequencies. Pattern search finds a sequence

of points to approach an optimal point. Due to the added constraints in the current

problem, pattern search algorithms failed to converge to an optimal solution [222]. For

pattern search to successfully reach an optimal solution, it requires a series of valid points
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at each iteration of the optimization process. Table 6.2 illustrates the optimal yield stress

values and Young’s modulus, shear modulus, bending and torsional frequencies obtained

by the proposed method for both sets of constraints and bounds.

Table 6.2. Summary of the results: The yield stress σy, Young’s modulus
E1, shear modulus G12, bending ω1b and torsional ω1t frequencies of the
optimal solutions generated by the proposed method for both sets of
constraints (Equations 6.15a, 6.16a)

.

Constraint Bound σy(in MPa) E1(in GPa) G12(in GPa) ω1b(in Hz) ω1t(in Hz)
1 Upper 385.237 209.546 77.313 120.006 21.341
1 Lower 385.113 235.905 82.316 121.272 21.344
2 Upper 388.089 153.160 93.723 102.649 23.497
2 Lower 387.134 184.679 92.772 112.661 23.377

In their previous works [1, 203], Acar et al. used a genetic algorithm based scheme

to solve the upper bound approach. In a later work, Acar et al. [2] converted the upper

bound approach to a lower bound approach that involved converting the problem from

stiffness domain to compliance (reciprocal of stiffness) domain. Hence, by converting

the original problem into a linear problem, Acar et al. arrived at an LP solution for

the constrained microstructure design problem. The proposed data-driven approach is

compared with the methods advanced by Acar et al. as their approach outperformed

other optimization methods. For the upper and lower bound approaches, our solutions are

compared against the genetic algorithm based scheme and LP-based methods respectively.

The proposed data sampling approach based on the sampling algorithms surpassed the

yield stresses obtained from genetic algorithm based solver for the upper bound approach

(as shown in Table 6.3). In particular, we get an improvement of more than 25% for

upper bound approach on the first set of objectives against the previous state-of-the art

approach. Additionally, the results for the lower bound are comparable to the optimal



120

values achieved by the LP method (Table 6.4). It is important to note that only the

LP solution (used for the lower bound approach by Acar et al. [2]) yields the theoretical

maximum value in contrast to the genetic algorithm solver scheme used by them for the

upper bound approach [1].

Table 6.3. Comparison of the maximum yield stress achieved for the 2 sets
of constraints with the proposed approach and the previous state-of-the
art genetic algorithm solver (GA) [1] approach for microstructure design
with process constraints(upper bound). The yield stress σy, bending ω1b

and torsional ω1t frequencies of the optimal solutions generated by both
methods. The units for yield stress σy is MPa and the frequencies is Hz.

Constraint Bound σy(current) σy(GA) ω1b(current) ω1b(GA) ω1t(current) ω1t(GA)
1 Upper 385.237 384.126 120.006 120.210 21.341 21.498
2 Upper 388.089 308.446 102.589 113.918 23.482 23.485

Table 6.4. Comparison of the maximum yield stress achieved for the 2 sets
of constraints with the proposed approach and the previous
state-of-the-art LP [2] approach for the microstructure design with process
constraints (lower bound). The yield stresses σy, bending ω1b and torsional
ω1t frequencies of the optimal solutions generated by both methods. The
units for the yield stress σy is MPa and the frequencies is Hz.

Constraint Bound σy(current) σy(LP) ω1b(current) ω1b(LP) ω1t(current) ω1t(LP)
1 Lower 385.113 385.650 121.272 120.020 21.344 21.500
2 Lower 387.134 387.259 106.519 100.000 23.477 23.499

Figures 6.6 and 6.7 represent the frequency distribution of yield stress values for upper

and lower bounds for the first and second set of constraints respectively. Figures 6.8

and 6.9 depict the optimal upper and lower bound ODF solutions for the two constraints

respectively.

A sensitivity analysis is performed by representing the distribution ODF and frequency

plot (inset) of the top/highest 1% yield stress values across the 76 ODF dimensions (Fig-

ures 6.10 and 6.11). The figures exhibit the fraction (or percentage) of non-zero ODFs
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(a) upper bound approach (b) lower bound approach

Figure 6.6. Frequency distribution of yield stress values for first set of
constraints

(a) upper bound approach (b) lower bound approach

Figure 6.7. Frequency distribution of yield stress values for second set of
constraints

(a) upper bound approach (b) lower bound approach

Figure 6.8. Finite element microstructure of optimal ODF examples for
the first set of frequency constraints

in the ODF vectors that yield high-stress values, in the case of both upper and lower

bound solutions for both sets of constraints. The peaks in the frequency plots represent

the ODF dimensions that are non-zero across the majority of ODF vectors yielding the

highest objective value (in this case, yield stress). The distribution ODFs in these figures
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(a) upper bound approach (b) lower bound approach

Figure 6.9. Finite element microstructure of optimal ODF examples for
the second set of frequency constraints

does not exhibit the actual values. Rather, they represent the percentage of occurrence

of the ODF dimensions in top 1% of the solutions. It is observed that the sensitivity of

the near optimum solutions to the ODFs for the lower and upper bound approaches are

similar, especially for the first set of constraints. Although the computation of interme-

diate properties in the case of upper or lower bound solutions is different (stiffness and

compliance respectively), this is admissible as the same objective function is being solved.

The figures signify that a small number of ODF dimensions can predominantly influence

the solution space proximal to the optimal value. This can motivate the development of

future sampling approaches for ODF vectors to iteratively adapt to sample across only

few ODF dimensions instead of all to accelerate the data-generation process.

(a) upper bound approach (b) lower bound approach

Figure 6.10. Finite element discretized sensitivity plots for ODF and
frequency distribution(inset) of the top/highest 1% yield stress values
across ODF dimensions for the first set of constraints.
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(a) upper bound approach (b) lower bound approach

Figure 6.11. Finite element discretized sensitivity plots for ODF and
frequency distribution(inset) of the top/highest 1% yield stress values
across ODF dimensions for the second set of constraints.

One weakness of the proposed data-driven method is its higher time cost compared

to LP methods. However, traditional optimization techniques using combinatorial search

methods or evolutionary algorithms are also time-consuming. Our framework attempts to

search the entire sample space for attaining the optimal or near-optimal solutions. Besides,

it should be emphasized that the proposed sampling algorithms are designed to work even

for the more difficult problem of nonlinear optimization. Heuristic search using data-

driven approaches is beneficial for solving problems in which the objective function has

a non-convex relation to its set of constraints. Another major advantage of the proposed

sampling scheme is achieving numerous optimal and near-optimal solutions, that can, in

turn, reduce the time and effort for the transition between design and processing.

6.6. Summarization

The selection of materials and geometry to maximize or minimize a given property

has been a cardinal problem in materials science. The potential of data-driven approaches

for solving a constrained microstructure design problem for both upper and lower bound

methods is expounded by the proposed strategy. Our approach arrives at a higher (or in

few cases, equivalent) optimal value than the previous state-of-the-art methods. The data
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generation strategies attempt to explore the entire sample space and generate numerous

near-optimal solutions (about 100-1000, i.e. 2 − 3 orders of magnitude more than prior

methods). Previous approaches including LP techniques lead to a unique or a handful of

optimal solutions. Numerous near-optimal solutions give the flexibility to use traditional

low-cost manufacturing processes such as forming and heat treatment. These processes

can generate only a limited set of microstructures, and frequently manufacturing from a

single optimal solution may not be feasible.

Leveraging data-driven techniques can play an essential role in the expedition of a

precise design of materials with process constraints. This study has demonstrated the

power of carefully designed sampling approaches by identifying multiple near-optimal

solutions for a non-linear optimization problem, and is expected to inspire the development

of alternative sampling schemes building upon the ones proposed in this work which can

reach optimal solutions faster and deliver numerous near-optimal solutions. Further, with

parallel computing technologies becoming inexpensive, especially Graphical Processing

Units(GPU) computing, distributed implementations of our algorithm can significantly

diminish the optimization time.

The analysis for the constrained microstructure optimization problem depicts that

certain combinations of ODF dimensions are non-zero more often in the ODF vector of

the near-optimal solutions. The proposed work provides a future direction for feedback

aware sampling that can iteratively incentivize distinct ODF dimensions that yield ODF

vectors with higher objective value, which can be investigated to accelerate the process

of attaining optimal or near-optimal solutions.
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CHAPTER 7

Microstructure Optimization with Constrained Design

Objectives using Machine Learning-based Feedback-aware Data

Generation

7.1. Introduction

Exploring and harnessing the association between processing, structure, properties,

and performance is a critical aspect of new materials exploration [4, 7, 8, 11, 19, 161, 162,

185]. Variation in microstructure leads to a wide range of materials properties which in

turn impacts the performance. The materials performance can be significantly improved

by dovetailing the microstructure [12, 184, 186, 223]. Titanium alloys are used for air-

frame panels, and optimizing the property is necessary for the safety and performance

of the aircraft [224–227]. Furthermore, both the cost of the material and machining for

Titanium panels are expensive [228, 229]. Due to their high tensile strength to density

ratio, high corrosion resistance, and ability to withstand moderately high temperatures

without creeping, titanium alloys are used considerably in aircraft applications. It is also

a very ductile material that can be worked into many shapes.

One of the major goals of design optimization in scientific applications is the trade-off

of properties based on prioritizing one design goal over others [230, 231]. For microstruc-

ture optimization, it can involve enhancing properties in one direction while sacrificing
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the properties in other directions where they are not as important for the design prob-

lem [232]. Techniques that allow tailoring of properties of polycrystalline alloys involves

selection of preferred orientations of various crystals constituting the polycrystalline alloy.

This work addresses the problem by tailoring crystallite distribution for specific optimiza-

tion design problems. The orientation distribution function (ODF) is used to quantify the

microstructure [161, 206–208] which represents the volume fractions of crystals of different

orientations of the microstructure.

In this work, we aim to explore the microstructure optimization of multiple design

problems for a Titanium panel. Two different mesh sizes to represent ODFs are explored

in this work - 50 and 388. Three different properties: coefficient of expansion α, stiffness

coefficient C11 and yield stress σ are optimized. Our data sampling-based methodology

not only outperforms or is on par with other optimization techniques in terms of the

optimal property value but also provides numerous near-optimal solutions, 3-4 orders of

magnitude more than previous methods.

7.2. Problem Statement

We aim to explore the microstructure optimization of multiple design problems for

a Titanium panel. Two different mesh sizes to represent ODFs are investigated in this

work - 50 and 388. Three separate properties: coefficient of thermal expansion α, stiffness

coefficient C11 and yield stress σ are optimized. There are four different design problems

explored, and both the upper and lower bounds are solved. Figure 7.1 illustrates a section

of Titanium aircraft panel and corresponding microstructure cross-section.
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Figure 7.1. Geometric representation of Titanium panel

The ODF values are associated with an orientation of the microstructure. Using the

ODF approach is advantageous since the averaged material properties over a microstruc-

tural domain can be computed using the homogenization (averaging) equations which are

linear with respect to the ODF values. This is true when the effects of crystal size and

shape are ignored, and homogenous deformity is assumed in the volume element. Us-

ing the homogenization relation, the orientation-dependent averaged material property,

< χ >, can be computed using the material property values at different orientations, χ(r),

and the ODF values, A.

< χ >=

∫
R

χ(r)A(r)dv,

where, the orientation is denoted by r. The ODF representation should satisfy the

following volume normalization constraint in the microstructural domain.

∫
R

A(r)dv = 1

The optimization problems of interest aim to identify the best microstructure design

to enhance the material properties. Since the ODF values quantify the microstructural

texture, the goal is to identify the optimum ODF values for each problem. However, the

ODF solution space is high-dimensional, and it leads to an optimization problem with
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numerous design variables. Here, one favorable approach would be generating a new

solution space, which is called as property closure, which includes the complete range

of properties obtainable from the space of the ODFs. In property closure approach,

the material properties can be calculated with either upper or lower bound averaging

assumption [1]. An example computation of property closure with upper and lower bounds

approaches is shown in Fig. 7.3 for stiffness (C11, C12 and C22) and compliance (S11, S12

and S22) properties. The example computations for the averaged stiffness, < C >, and

compliance, < S >=< C−1 >, are given next for the upper and lower bound approaches

respectively.

< C >=

∫
R

CAdv

< S >=< C−1 >=

∫
R

C−1A−1dv

< S >=

∫
R

SAdv

In the present work, we will utilize both upper and lower bound averaging techniques to

identify the optimum microstructure solutions. The material of interest is polycrystalline

α-Titanium as shown in Figure 7.2 (a), red color shows independent orientations, blue

color shows dependent orientations resulting from the crystallographic symmetries. We

will model this hexagonal close-packed (HCP) structure using 111 ODF values defined in

the Rodrigues fundamental region as shown in Fig. 7.2 (b). However, we will only use 50

independent ODF values for modeling purpose since the remaining ODF values can be
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determined using the crystallographic symmetries. In Fig. 7.2 (b), a finer finite element

mesh, that can improve the numerical resolution of microstructural texture representation,

having 388 independent ODF values is illustrated.

(a) ODF representation indicat-
ing the location of 50 independent
nodes in the orientation space in
red

(b) ODF representation indi-
cating the location of 388 in-
dependent nodes in the orien-
tation space in red

Figure 7.2. Finite element discretization of the orientation space of HCP
Titanium.

In this work we solve for the best microstructure design that maximizes desired prop-

erties which are coefficient of thermal expansion αx, stiffness coefficient C11 and yield

stress σy and satisfies the design constraints. The material properties of the objective

function are computed using the upper bound averaging approach. For design constraints

both upper and lower bound averaging approaches are utilized.

Four design problems are presented in this work, and each of the problems are solved

using both upper and lower bound approach. Upper bound sub-problems for design

problems 1 and 2 are being solved in mesh sizes of both 50 and 388, while the lower

bound sub-problems are being solved in 50 dimensions. Both the upper and lower bound

design sub-problems 3 and 4 are solved in mesh size of 388. The finer mesh with the

388 ODF values is expected to provide a more accurate representation as the Rodrigues
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(b) Property closure for compliance
(S11,S12 and S22) parameters

Figure 7.3. Property closures in C and S space for HCP Titanium

domain is discretized with more variables. The design constraints of the optimization

problems reflect certain stiffness needs of engineering designs.

Problem 1:

max αx

Upper Bound: (mesh dimension 50 and 388)

(7.1a) subject to 161 ≤ C11 ≤ 165 GPa

(7.1b) subject to 75 ≤ C12 ≤ 78 GPa

Lower Bound: (mesh dimension 50)

(7.2a) subject to 0 ≤ C11 ≤ 125 GPa

(7.2b) subject to 90 ≤ C12 ≤ 95 GPa
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Problem 2:

max C11

Upper Bound: (mesh dimension 50 and 388)

(7.3) subject to 75 ≤ C12 ≤ 78 GPa

Lower Bound: (mesh dimension 50)

(7.4) subject to 90 ≤ C12 ≤ 95 GPa

Problem 3: (mesh dimension 388)

max σy

Both Bounds:

(7.5a) subject to ≤ S11 ≤ 0.15 1/GPa

(7.5b) subject to ≤ S22 ≤ 0.1 1/GPa

Problem 4: (mesh dimension 388)
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max σy

Upper Bound:

(7.6a) subject to 120 ≤ C11 ≤ 130 GPa

(7.6b) subject to 90 ≤ C12 ≤ 95 GPa

(7.6c) subject to 0 ≤ S11 ≤ 0.15 1/GPa

(7.6d) subject to 0 ≤ S22 ≤ 0.1 1/GPa

Lower Bound:

(7.7a) subject to 0 ≤ C11 ≤ 125 GPa

(7.7b) subject to 0 ≤ C12 ≤ 75 GPa

(7.7c) subject to 0 ≤ S11 ≤ 0.15 1/GPa

(7.7d) subject to 0 ≤ S22 ≤ 0.1 1/GPa
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Apart from the specific set of design constraints for the problem, they should also obey

the following generic constraints. It is important to note that the set of constraints for

the problems are representative examples, and actual constraints may differ from them in

the real design. However, it was ensured that the design constraints resembled real-world

problems.

A≥0∫
Adv = 1

7.3. Method

The proposed methodology is divided into two phases. In the first phase, a data

repository is created using two sampling algorithms mentioned in Chapter 6. In the second

phase, we evaluate which combinations of ODF dimensions lead to optimal solutions by

machine learning. The following flow-diagram illustrates the overall methodology.

Data
Generation

Feedback	
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Sampling
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Figure 7.4. Flow diagram of our methodology. The green arrows depict the
data generation process, and the orange arrow signifies the feedback-aware
sampling.
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In the first phase of our methodology, we had generated a dataset using two sampling

algorithms. In the second phase, we attempt to investigate which combination of non-zero

ODF dimensions lead to optimal or near-optimal solutions. For this purpose, we select

the top 10 % and bottom 10 % based on the desired design objective and label them as

‘High’ and ‘Low’, and perform random forest-based [233] machine learning models on this

data subset, where the ODFs become the feature vector. For instance, in design problem

1, as the objective was maximizing the coefficient of expansion αx, ODF vectors yielding

the highest 10 % and bottom 10 % of αx are labeled as ‘High’ and ‘Low’. Random Forests

are ensemble learning methods that construct multiple decision trees [234] to predict the

correct output. The label of the expected output is decided by a vote across the ensemble

of decision trees.

The motivation behind this step is to evaluate ODF dimensions which are important

for generating optimal solutions. This step extracts the features that are most important

for generating ‘High’ values. However, as the target is to generate a polycrystalline

solution, we proceed to the second iteration of sampling. However, during this step,

instead of sampling across all ODF dimensions, we select only those dimensions that are

advantageous in providing near-optimal solutions.

7.4. Results

In this chapter, we evaluate the proposed data-driven approach for generating optimal

and near-optimal solutions. The proposed method is comparable to solutions produced

by prior state-of-the-art techniques and delivers numerous optimal or near-optimal solu-

tions with distinct microstructure designs. The near-optimal solutions for this problem
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Table 7.1. Number of solutions within 0.01%, 0.02%, 0.05% and 0.1% of
the optimal solutions for the fourth set of constraints

ML-Guided Sampling
Bound Mesh Size within 0.01% within 0.02% within 0.05% within 1%
Upper 388 140 280 759 1.255x103

Lower 388 0 6.223x103 1.078x105 1.084x105

Table 7.2. Comparison of coefficient of expansion αx, and stiffness param-
eters (C11 and C12) between traditional optimization approaches and ML-
Guided Sampling for design problem 1 (Equations 7.1, 7.2)

.

Bound Mesh Size Linear Programming and Genetic Algorithm ML-Guided Sampling
αx(in 1/K) C11(in GPa) C12(in GPa) αx(in 1/K) C11(in GPa) C12(in GPa)

Upper 50 8.5506x10−6 161.0000 75.0000 8.4903x10−6 161.0631 75.0450
Upper 388 8.8560x10−6 161.0000 75.0000 8.8392x10−6 161.0519 75.0486
Lower 50 9.3682x10−6 126.6925 90.0000 9.3790x10−6 129.9803 91.6693

Table 7.3. Comparison of stiffness parameters (C11 and C12) between tradi-
tional optimization approaches and ML-Guided Sampling for design prob-
lem 2 (Equations 7.3, 7.4)

.

Bound Mesh Size Linear Programming and Genetic Algorithm ML-Guided Sampling
C11(in GPa) C12(in GPa) C11(in GPa) C12(in GPa)

Upper 50 167.8562 75.0000 167.8538 75.0013
Upper 388 170.2609 75.0000 169.8015 75.0049
Lower 50 144.2199 95.0000 144.1442 94.9546

Table 7.4. Comparison of yield stress (σy) and compliance parameters (S11

and S12) between traditional optimization approaches and ML-Guided Sam-
pling for design problem 3 (Equation 7.5)

.

Bound Mesh Size Linear Programming and Genetic Algorithm ML-Guided Sampling
σy(in MPa) S22(in 1/GPa) S12(in 1/GPa) σy(in MPa) S22(in 1/GPa) S12(in 1/GPa)

Upper 388 423.9396 0.0071 0.0098 423.9396 0.0071 0.0097
Lower 388 423.8462 0.0150 0.1073 422.8327 0.0200 0.0999

correspond to different microstructure configurations having same or similar values for

yield stress. Furthermore, in our study, several different objectives are solved, and the

proposed approach is successful for both coarse (50 dimensions) and fine (388 dimensions)

meshes for HCP Titanium. Table 7.1 presents the total number of near-optimal solutions,

or in other words, solutions that are proximal to the optimal solutions.
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Table 7.5. Comparison of yield stress σy, stiffness parameters (C11, C12),
and compliance parameters (S11 and S22) between traditional optimiza-
tion approaches and ML-Guided Sampling for design problem 4 (Equa-
tions 7.6, 7.7)

.

Bound Approach Mesh Size Linear Programming and Genetic Algorithm
σy(in MPa) C11(in GPa) C12(in GPa) S11(in 1/GPa) S22(in 1/GPa)

Upper LP 388 421.8096 175.0000 69.6976 0.0075 0.0095
Upper ML 388 421.8094 174.9997 69.6976 0.0074 0.0094
Lower GA 388 423.6050 124.8043 78.3030 0.01612 5.8017x10−8

Lower ML 388 422.8341 119.8148 80.7035 0.0200 0.0999

Acar et al. in their previous works [1, 203] used a genetic algorithm based scheme to

solve the upper bound problem. In [2], the upper bound approach was transformed to

a lower bound approach by converting the problem from stiffness domain to compliance

(reciprocal of stiffness) domain and thereby transforming a non-linear problem into a

linear problem that is LP-solvable. In [232], a data-driven approach for arriving at a near-

optimal solution was expounded for upper and lower bound problems for optimization of

the yield stress of cantilevered Galfenol beam under vibrational constraints. The proposed

work improves on the previous methodology by identification of a minimal subset of ODF

dimensions using machine learning.

For the upper and lower bound approaches, our solutions are compared against the

genetic algorithm based scheme and LP-based methods respectively. The proposed data

sampling approach based on the sampling algorithms surpassed the yield stresses obtained

from genetic algorithm based solver for the upper bound approach. Additionally, the

results for the lower bound are comparable to the optimal values achieved by the LP

method. It is important to note that only the LP solution (used for the lower restricted

approach by Acar et al. [2]) yields the theoretical maximum value in contrast to the

genetic algorithm solver scheme used by them for the upper bound approach [1].
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(a) upper bound (mesh
size 50)

(b) upper bound (mesh
size 388)

(c) lower bound

Figure 7.5. Frequency distribution of coefficient of expansion for upper
(mesh sizes 50 and 388) and lower bounds (mesh size 50) for first set of
constraints (Equations 7.1, 7.2) for ML-Guided sampling. The overall fre-
quency distribution of entire sampling process is presented inset.

Figures 7.5,7.6 represent the frequency distribution for the feedback-driven data-

generation of coefficient of expansion and C11 for upper (mesh sizes 50 and 388) and lower

bounds (mesh size 50) for first set of constraints (Equations 7.1, 7.2) for ML-Guided sam-

pling. Figures 7.7, 7.8 illustrate finite element discretized sensitivity ODF cross-sections

(mean and standard deviation) and frequency distribution of the maximal desired values

across ODF dimensions for design problem 1 and 2. The frequency distribution and sen-

sitivity plots for design problems 3 and 4 are presented in the Appendix. Examples of

finite element microstructure (FEM) cross-sections of near-optimal ODF solutions for all

four objective problems are presented in the Appendix.

The potential of our methodology to produce many optimal solutions for the upper

bound subproblem in the neighborhood of the LP solution for design problem 1 and 2 for

both mesh sizes demonstrate that our method can be advantageous for any mesh size.
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(a) upper bound (mesh
size 50)

(b) upper bound (mesh
size 388)

(c) lower bound

Figure 7.6. Frequency distribution of C11 for upper (mesh sizes 50 and
388) and lower bounds (mesh size 50) for second set of constraints (Equa-
tions 7.3, 7.4) for ML-Guided sampling. The overall frequency distribution
of entire sampling process is presented inset.

(a) upper bound (mesh
size 388)

(b) upper bound (mesh
size 50)

(c) lower bound

Figure 7.7. Finite element discretized sensitivity ODF cross-sections (mean
and standard deviation) and frequency distribution(inset) of the highest 1%
yield stress values across ODF dimensions for design problem 1.

(a) upper bound (mesh
size 388)

(b) upper bound (mesh
size 50)

(c) lower bound

Figure 7.8. Finite element discretized sensitivity ODF cross-sections (mean
and standard deviation) and frequency distribution(inset) of the highest 1%
yield stress values across ODF dimensions for design problem 2.
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7.5. Summarization

The selection of materials and geometry to optimize desired properties has been a

cardinal problem in materials science. The proposed strategy expounds the potential of

data-driven approaches for solving a constrained microstructure design objective for both

upper and lower bound problems. Our approach is comparable to previous state-of-the-art

methods. We outperform the maximum solutions obtained using Genetic algorithms and

are close to the theoretical maximum solution obtained using LP. The targeted sampling

approach proposed first explores the entire sample space and then selectively generates

solutions that optimize the given design objective. The proposed approach generates nu-

merous near-optimal solutions, 3 to 4 orders of magnitude higher than prior methods.

Past methodologies including LP techniques lead to a unique or handful of optimal so-

lutions. One of the challenges of inverse materials problems is establishing production

feasibility of proposed microstructure design. Many cost-aware manufacturing processes

can generate specific microstructures, and thus, selecting from hundreds of thousands of

optimal microstructures accelerates the design to deployment step.
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CHAPTER 8

Conclusion and Future Work

8.1. Conclusion

This dissertation has presented several works that attempts to address some of the

challenges for creating machine learning and data-driven optimization systems for scien-

tific applications. All the works involve developing solutions that accelerate the discovery

or prediction tasks in scientific applications. The works represent the wide applicability

of data science techniques across domains, disciplines and datasets.

Chapters 2, 3 and 4 presents several techniques for predictive modeling for property

prediction tasks. Chapter 2 focuses on development of a generalizable neural architec-

ture for data mining from molecular structures. It proposes a framework of architectures

CheMixNet which combines representations using vector-based representation such as

fingerprints as well as a text-based representation such as SMILES. We were able to

achieve much better results than neural networks that only utilized SMILES or finger-

prints. Chapter 3 presents application of extreme random forests for predicting HOMO

values of OPV cells from the HOPV dataset. Our models trained on MACCS and Atom-

Pair fingerprints outperformed other models trained on neural networks as well as other

machine learning algorithms. Further, we studied the correlation of top ranked features

from our models with HOMO value, and explained the HOMO values of the molecules

in the HOPV dataset. The success of using machine learning models on a small but
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well-curated calibrated dataset exposes an exciting area in materials discovery, and in

particular for solar cell technology. This, in turn, can provide a path towards solving

the world energy problem in a clean and environmentally friendly way. In Chapter 4,

we utilize transfer learning to improve our neural network models for predicting HOMO

values for the HOPV dataset. We develop another MISO neural architecture SINet which

uses two text-based representations SMILES and InChI, and train on the much larger

CEP dataset. Thereafter, we use this pre-trained model as a seed model for training on

the HOPV datasets. Transfer learning provides significant performance gains on both the

experimental and DFT data in the HOPV dataset.

Chapter 5 propounds an iterative ML-based surrogate modeling approach for Additive

Manufacturing-simulations. The iterative modeling approach develops an initial model

on a small amount of simulation timesteps and predicts the temperature for the next few

timesteps. Then, it develops another model that absorbs the predicted values, and further

predicts the next few timesteps. We keep repeating this process. This iterative approach

outperformed a non-iterative approach, and also achieved mean absolute percentage errors

less than 1%.

Chapters 6 and 7 discusses frequency-based and ML-aided approaches to constrained

optimization. In Chapter 6, we solve for maximizing yield strength of Galfenol microstruc-

tures subject to frequency constraints. Sampling the entire search space exhaustively is

difficult. Hence, we develop a targeted sampling approach that extracts dimensions of the

ODF that lead to higher objective values, and then sample only across these dimensions.

In Chapter 7, we utilize machine learning for narrowing the search space further for sev-

eral objective functions relating to microstructure optimization in Titanium. The ODF
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vector has more than five times the dimension for Galfenol, and hence even a frequency-

based approach doesn’t suffice. A machine learning-based approach was able to narrow

the search space, and sample only on those combinations of ODF dimensions that would

lead to optimal values for the objectives.

In the next section, we discuss how our methods can be extended to more general

cases and the opportunities for future work.

8.2. Future Work

8.2.1. Chemical Property Prediction

In this thesis, we demonstrate the success of MISO architectures such as CheMixNet

(Chapter 2) or SINet(Chapter 4) for predicting chemical properties. One of the future

tasks would be develop a method for interpreting the impact of the candidate neural sub-

networks on the whole network. For a given prediction, it would be useful to understand

which features or which part of the network were more useful. Also, we suggest augmenting

ConvGraph and Chemception architectures as candidate input neural networks as part of

CheMixNet to generalize not only across fingerprints and SMILES/InChI but also across

molecular graphs and images. Further, as chemical significance is present in both the

character following as well as preceding a given character in a SMILES string, we believe

bidirectional RNNs can perform better than vanilla one-directional RNNs. Lastly, we

believe that Hierarchical Attention Networks (HANs) [235] that combine character level

and word level sequences for text prediction could present superior performance to the

aforementioned architectures.
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Directed efforts are needed to standardize the collection and representation of ex-

perimental manufacturing and processing data for effective use with machine learning

techniques. For the use case of organic solar cells, leveraging machine learning with com-

putational and experimental chemistry could play an essential role in the expedition of

systematic design of high-efficiency photo-voltaic materials and holds significant promise

as a potential solution to future energy needs.

8.2.2. Surrogate Model for Additive Manufacturing

One of the broader goals of a ML-driven surrogate model is to be part of an interleaved

FEM-ML simulation that harnesses the temperature profile of the odd layer (Layer i)

calculated using FEM to predict the subsequent even layer (Layer i+ 1). Layer i+ 2 will

then be calculated using FEM simulation, and Layer i + 3 will be predicted. This can

accelerate the speed of simulations by nearly a factor of two, hopefully without impacting

the accuracy significantly. Although the work in this thesis restricts itself to temperature

profile prediction for an AM process, the same idea can be extended to related manufac-

turing processes such as incremental forming [236]. In general, this work can be extended

to any phenomenon which utilizes partial differential equation based modeling.

Another possible future direction is to use a combination of recurrent neural network

(RNN) and ensemble tree-based modeling. Stacked RNNs have been effective for learning

the spatio-temporal nature of the additive manufacturing temperature profile [171]. How-

ever, RNNs take lot of time to train and would make it infeasible to be used directly in

an iterative ML system. The RNN can be trained ex-situ on an existing dataset of FEM
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simulations. Then, the penultimate layer of this ex-situ network can be used for gener-

ating features in-situ as part of the real-time system. Then, an ensemble tree algorithm

can be applied on these set of features for an iterative real-time system.

Further, we suggest testing and benchmarking our approach across more complex

geometries, different manufacturing parameters such as laser speed and intensity as well

as FEM parameters such as across different mesh sizes.

8.2.3. Microstructure Optimization of Microstructures

The proposed approach for maximizing the yield stress under process constraints using

data sampling algorithms can be extended for property optimizations for other non-linear

design limitations and other materials. The sampling schemes are generalizable and ag-

nostic of the problem domain and can be used in other scientific domains as well. There

have been recent developments in reinforcement learning-based approaches for solving

constrained optimization problems [237, 238]. In particular, multi-armed bandit based

approaches have been used successfully for constrained optimization problems across do-

mains [239]. A reinforcement learning-based approach would be automatically able to

provide feedback to the sampling process without human guidance.

Another possible future direction is to consider Monte Carlo Tree Search-based meth-

ods instead of the proposed heuristic based tree-based models for reducing the constraint

space. In addition, once we have selected one or more ODF solutions, it is possible to find

similar solutions using Variational Auto-Encoders and Generative Adversarial Networks.
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[75] P Granero, VS Balderrama, J Ferré-Borrull, J Pallarès, and LF Marsal. Two-dimensional

finite-element modeling of periodical interdigitated full organic solar cells. Journal of

Applied Physics, 113(4):043107, 2013.

[76] Yongjeong Lee, Kyungnam Kang, Sanghwa Lee, Hyeong Pil Kim, Jin Jang, and Jungho

Kim. Integrated optoelectronic model for organic solar cells based on the finite element



154

method including the effect of oblique sunlight incidence and a non-ohmic electrode con-

tact. Japanese Journal of Applied Physics, 55(10):102301, 2016.

[77] Warren J. Hehre. Ab initio molecular orbital theory. Wiley-Interscience, 1986.

[78] Jeremy Taylor, Hong Guo, and Jian Wang. Ab initio modeling of quantum transport

properties of molecular electronic devices. Physical Review B, 63(24):245407, 2001.

[79] Jean-Luc Brédas, Joseph E Norton, Jérôme Cornil, and Veaceslav Coropceanu. Molec-
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Vallvé, and Gerard Pujadas. Molecular fingerprint similarity search in virtual screening.

Methods, 71:58–63, 2015.

[113] Sereina Riniker and Gregory A Landrum. Open-source platform to benchmark fingerprints

for ligand-based virtual screening. Journal of cheminformatics, 5(1):1, 2013.

[114] Andreas Bender and Robert C Glen. Molecular similarity: a key technique in molecular

informatics. Organic & biomolecular chemistry, 2(22):3204–3218, 2004.

[115] Michael Reutlinger, Christian P Koch, Daniel Reker, Nickolay Todoroff, Petra Schneider,

Tiago Rodrigues, and Gisbert Schneider. Chemically advanced template search (cats)

for scaffold-hopping and prospective target prediction for orphan molecules. Molecular

informatics, 32(2):133–138, 2013.

[116] Yasuo Tabei and Koji Tsuda. Sketchsort: Fast all pairs similarity search for large databases

of molecular fingerprints. Molecular informatics, 30(9):801–807, 2011.

[117] David Weininger. Smiles, a chemical language and information system. 1. introduction to

methodology and encoding rules. Journal of chemical information and computer sciences,

28(1):31–36, 1988.

[118] G Landrum. Rdkit: open-source cheminformatics software, 2016.

[119] Navpreet Kaur, Mandeep Singh, Dinesh Pathak, Tomas Wagner, and JM Nunzi. Organic

materials for photovoltaic applications: Review and mechanism. Synthetic Metals, 190:20–

26, 2014.



159

[120] Yuze Lin and Xiaowei Zhan. Non-fullerene acceptors for organic photovoltaics: an emerging

horizon. Materials Horizons, 1(5):470–488, 2014.

[121] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1–9, 2015.

[122] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[123] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, and Yuan Tang. Xgboost:

extreme gradient boosting. R package version 0.4-2, pages 1–4, 2015.

[124] Thomas F Stocker, Dahe Qin, Gian-Kasper Plattner, M Tignor, Simon K Allen, Judith

Boschung, Alexander Nauels, Yu Xia, Vincent Bex, and Pauline M Midgley. Climate

change 2013: The physical science basis, 2014.

[125] Andrew Hoffman. Computational chemistry in rational material design for organic pho-

tovoltaics. 2015.

[126] Godfrey Boyle et al. Renewable energy: power for a sustainable future. Taylor & Francis,

1997.

[127] John A Turner. A realizable renewable energy future. Science, 285(5428):687–689, 1999.

[128] Larry Baxter. Biomass-coal co-combustion: opportunity for affordable renewable energy.

Fuel, 84(10):1295–1302, 2005.

[129] NASA. Nasa - clean energy. https://www.nasa.gov/centers/ames/greenspace/

clean-energy.html, 2016.

https://www.nasa.gov/centers/ames/greenspace/clean-energy.html
https://www.nasa.gov/centers/ames/greenspace/clean-energy.html


160

[130] Junsheng Yu, Yifan Zheng, and Jiang Huang. Towards high performance organic photo-

voltaic cells: A review of recent development in organic photovoltaics. Polymers, 6(9):2473–

2509, 2014.

[131] Christoph Brabec, Ullrich Scherf, and Vladimir Dyakonov. Organic photovoltaics: mate-

rials, device physics, and manufacturing technologies. John Wiley & Sons, 2011.

[132] Omar A Abdulrazzaq, Viney Saini, Shawn Bourdo, Enkeleda Dervishi, and Alexandru S

Biris. Organic solar cells: a review of materials, limitations, and possibilities for improve-

ment. Particulate science and technology, 31(5):427–442, 2013.

[133] Stephen R Forrest. The limits to organic photovoltaic cell efficiency. MRS bulletin,

30(1):28–32, 2005.

[134] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2010.

[135] Shin Hoo-Chang, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues, Jian-

hua Yao, Daniel Mollura, and Ronald M Summers. Deep convolutional neural networks for

computer-aided detection: Cnn architectures, dataset characteristics and transfer learning.

IEEE transactions on medical imaging, 35(5):1285, 2016.

[136] Stephen R Heller, Alan McNaught, Igor Pletnev, Stephen Stein, and Dmitrii Tchekhovskoi.

Inchi, the iupac international chemical identifier. Journal of cheminformatics, 7(1):23,

2015.

[137] Giampaolo Barone, Dario Duca, Arturo Silvestri, Luigi Gomez-Paloma, Raffaele Riccio,

and Giuseppe Bifulco. Determination of the relative stereochemistry of flexible organic

compounds by ab initio methods: conformational analysis and boltzmann-averaged giao

13c nmr chemical shifts. Chemistry–A European Journal, 8(14):3240–3245, 2002.

[138] JK Watson and KMB Taminger. A decision-support model for selecting additive manufac-

turing versus subtractive manufacturing based on energy consumption. Journal of Cleaner



161

Production, 176:1316–1322, 2018.

[139] Yaoyu Ding, James Warton, and Radovan Kovacevic. Development of sensing and control

system for robotized laser-based direct metal addition system. Additive Manufacturing,

10:24–35, 2016.

[140] J Ding, P Colegrove, Jorn Mehnen, Supriyo Ganguly, PM Sequeira Almeida, F Wang,

and S Williams. Thermo-mechanical analysis of wire and arc additive layer manufacturing

process on large multi-layer parts. Computational Materials Science, 50(12):3315–3322,

2011.

[141] Wentao Yan, Stephen Lin, Orion L Kafka, Yanping Lian, Cheng Yu, Zeliang Liu, Jin-

hui Yan, Sarah Wolff, Hao Wu, Ebot Ndip-Agbor, et al. Data-driven multi-scale multi-

physics models to derive process–structure–property relationships for additive manufac-

turing. Computational Mechanics, 61(5):521–541, 2018.

[142] Jorge E Correa, Ricardo Toro, and Placid M Ferreira. A new paradigm for organizing

networks of computer numerical control manufacturing resources in cloud manufacturing.

Procedia Manufacturing, 26:1318–1329, 2018.

[143] Daniel J Garcia, Mojtaba Mozaffar, Huaqing Ren, Jorge E Correa, Kornel Ehmann, Jian

Cao, and Fengqi You. Sustainable manufacturing with cyber-physical discrete manufac-

turing networks: Overview and modeling framework. Journal of Manufacturing Science

and Engineering, 141(2):021013, 2019.

[144] Jacob Smith, Wei Xiong, Jian Cao, and Wing Kam Liu. Thermodynamically consistent

microstructure prediction of additively manufactured materials. Computational mechanics,

57(3):359–370, 2016.

[145] Mojtaba Mozaffar, Ebot Ndip-Agbor, Stephen Lin, Gregory J Wagner, Kornel Ehmann,

and Jian Cao. Acceleration strategies for explicit finite element analysis of metal powder-

based additive manufacturing processes using graphical processing units. Computational



162

Mechanics, pages 1–16, 2019.

[146] C Li, ZY Liu, XY Fang, and YB Guo. Residual stress in metal additive manufacturing.

Procedia Cirp, 71:348–353, 2018.

[147] William E Frazier. Metal additive manufacturing: a review. Journal of Materials Engi-

neering and Performance, 23(6):1917–1928, 2014.

[148] Kaufui V Wong and Aldo Hernandez. A review of additive manufacturing. ISRN Mechan-

ical Engineering, 2012, 2012.

[149] Tuan D Ngo, Alireza Kashani, Gabriele Imbalzano, Kate TQ Nguyen, and David Hui.

Additive manufacturing (3d printing): A review of materials, methods, applications and

challenges. Composites Part B: Engineering, 2018.

[150] Bernhard Mueller. Additive manufacturing technologies–rapid prototyping to direct digital

manufacturing. Assembly Automation, 32(2), 2012.

[151] J-P Kruth, Ming-Chuan Leu, and Terunaga Nakagawa. Progress in additive manufacturing

and rapid prototyping. Cirp Annals, 47(2):525–540, 1998.

[152] Jeremy Faludi, Cindy Bayley, Suraj Bhogal, and Myles Iribarne. Comparing environmental

impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid

Prototyping Journal, 21(1):14–33, 2015.

[153] Ville Matilainen, Heidi Piili, Antti Salminen, Tatu Syvänen, and Olli Nyrhilä. Characteri-
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